|
|
|
Sample: |
Type III effector NopAA monomer, 31 kDa Sinorhizobium fredii USDA257 protein
|
Buffer: |
PBS, 150 mM NaCl, 10% glycerol, pH: 7.4 |
Experiment: |
SAXS
data collected at SWING, SOLEIL on 2014 Dec 17
|
Structural and enzymatic characterisation of the Type III effector NopAA (=GunA) from Sinorhizobium fredii USDA257 reveals a Xyloglucan hydrolase activity.
Sci Rep 10(1):9932 (2020)
Dorival J, Philys S, Giuntini E, Brailly R, de Ruyck J, Czjzek M, Biondi E, Bompard C
|
RgGuinier |
2.4 |
nm |
Dmax |
9.9 |
nm |
VolumePorod |
38 |
nm3 |
|
|
|
|
|
Sample: |
Poly(rC)-binding protein 2 monomer, 40 kDa Homo sapiens protein
|
Buffer: |
5 mM HEPES-KOH, 25 mM KCl, 2 mM MgCl2, 2 mM DTT, 4 % glycerol, 0.1 mM EDTA, pH: 7.5 |
Experiment: |
SAXS
data collected at SAXS/WAXS, Australian Synchrotron on 2017 Jul 16
|
Structure of the PCBP2/stem-loop IV complex underlying translation initiation mediated by the poliovirus type I IRES.
Nucleic Acids Res (2020)
Beckham SA, Matak MY, Belousoff MJ, Venugopal H, Shah N, Vankadari N, Elmlund H, Nguyen JHC, Semler BL, Wilce MCJ, Wilce JA
|
RgGuinier |
3.3 |
nm |
Dmax |
13.2 |
nm |
VolumePorod |
76 |
nm3 |
|
|
|
|
|
Sample: |
Truncated poly(rC)-binding protein 2 (ΔKH3) monomer, 28 kDa Homo sapiens protein
|
Buffer: |
5 mM HEPES-KOH, 25 mM KCl, 2 mM MgCl2, 2 mM DTT, 4 % glycerol, 0.1 mM EDTA, pH: 7.5 |
Experiment: |
SAXS
data collected at SAXS/WAXS, Australian Synchrotron on 2017 Jan 1
|
Structure of the PCBP2/stem-loop IV complex underlying translation initiation mediated by the poliovirus type I IRES.
Nucleic Acids Res (2020)
Beckham SA, Matak MY, Belousoff MJ, Venugopal H, Shah N, Vankadari N, Elmlund H, Nguyen JHC, Semler BL, Wilce MCJ, Wilce JA
|
RgGuinier |
2.6 |
nm |
Dmax |
9.2 |
nm |
VolumePorod |
66 |
nm3 |
|
|
|
|
|
Sample: |
Uncharacterized protein dimer, 66 kDa Legionella pneumophila protein
|
Buffer: |
20 mM Tris, 200 mM NaCl, pH: 8 |
Experiment: |
SAXS
data collected at B21, Diamond Light Source on 2019 Sep 18
|
Structure, Dynamics and Cellular Insight Into Novel Substrates of the Legionella pneumophila Type II Secretion System
Frontiers in Molecular Biosciences 7 (2020)
Portlock T, Tyson J, Dantu S, Rehman S, White R, McIntire I, Sewell L, Richardson K, Shaw R, Pandini A, Cianciotto N, Garnett J
|
RgGuinier |
2.9 |
nm |
Dmax |
9.4 |
nm |
VolumePorod |
114 |
nm3 |
|
|
|
|
|
Sample: |
DNA-binding protein HU-alpha octamer, 77 kDa Escherichia coli protein
|
Buffer: |
10 mM Bis-Tris, 100 mM NaCl, pH: 7.5 |
Experiment: |
SAXS
data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 May 27
|
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling.
Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M
|
RgGuinier |
3.2 |
nm |
Dmax |
10.7 |
nm |
|
|
|
|
|
Sample: |
DNA-binding protein HU-alpha, E34K dimer, 19 kDa Escherichia coli protein
|
Buffer: |
10 mM Bis-Tris, 100 mM NaCl, pH: 7.5 |
Experiment: |
SAXS
data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 Jun 1
|
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling.
Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M
|
RgGuinier |
2.2 |
nm |
Dmax |
6.7 |
nm |
VolumePorod |
36 |
nm3 |
|
|
|
|
|
Sample: |
Aquifex aeolicus McoA metaloxidase ∆328-352 (MCoA∆328-352) monomer, 53 kDa Aquifex aeolicus protein
|
Buffer: |
50 mM Tris-HCl, 150 mM NaCl, 2 mM TCEP, pH: 7.5 |
Experiment: |
SAXS
data collected at BM29, ESRF on 2017 Jul 13
|
The Methionine-Rich Loop of Multicopper Oxidase McoA follows Open-To-Close Transitions with a Role in Enzyme Catalysis
ACS Catalysis (2020)
Borges P, Brissos V, Hernandez G, Masgrau L, Lucas M, Monza E, Frazão C, Cordeiro T, Martins L
|
RgGuinier |
2.3 |
nm |
Dmax |
6.9 |
nm |
VolumePorod |
77 |
nm3 |
|
|
|
|
|
Sample: |
Aquifex aeolicus McoA metaloxidase ∆337-346 monomer, 54 kDa Aquifex aeolicus protein
|
Buffer: |
50 mM Tris-HCl, 150 mM NaCl, 2 mM TCEP, pH: 7.5 |
Experiment: |
SAXS
data collected at B21, Diamond Light Source on 2017 Dec 4
|
The Methionine-Rich Loop of Multicopper Oxidase McoA follows Open-To-Close Transitions with a Role in Enzyme Catalysis
ACS Catalysis (2020)
Borges P, Brissos V, Hernandez G, Masgrau L, Lucas M, Monza E, Frazão C, Cordeiro T, Martins L
|
RgGuinier |
2.3 |
nm |
Dmax |
7.0 |
nm |
VolumePorod |
78 |
nm3 |
|
|
|
|
|
Sample: |
Aquifex aeolicus McoA metaloxidase monomer, 55 kDa Aquifex aeolicus protein
|
Buffer: |
50 mM Tris-HCl, 150 mM NaCl, 2 mM TCEP, pH: 7.5 |
Experiment: |
SAXS
data collected at B21, Diamond Light Source on 2019 Apr 15
|
The Methionine-Rich Loop of Multicopper Oxidase McoA follows Open-To-Close Transitions with a Role in Enzyme Catalysis
ACS Catalysis (2020)
Borges P, Brissos V, Hernandez G, Masgrau L, Lucas M, Monza E, Frazão C, Cordeiro T, Martins L
|
RgGuinier |
2.3 |
nm |
Dmax |
7.5 |
nm |
VolumePorod |
79 |
nm3 |
|
|
|
|
|
Sample: |
Plasmodium falciparum Lipocalin tetramer, 89 kDa Plasmodium falciparum protein
|
Buffer: |
20 mM Tris pH7.5, 150 mM NaCl, 5% v/v glycerol, pH: 7.5 |
Experiment: |
SAXS
data collected at EMBL P12, PETRA III on 2019 Apr 8
|
Structure-Based Identification and Functional Characterization of a Lipocalin in the Malaria Parasite Plasmodium falciparum
Cell Reports 31(12):107817 (2020)
Burda P, Crosskey T, Lauk K, Zurborg A, Söhnchen C, Liffner B, Wilcke L, Pietsch E, Strauss J, Jeffries C, Svergun D, Wilson D, Wilmanns M, Gilberger T
|
RgGuinier |
3.2 |
nm |
Dmax |
10.3 |
nm |
VolumePorod |
126 |
nm3 |
|
|