Browse by MACROMOLECULE type: protein

SASDHC2 – PieE-FAD: 2,4-dichlorophenol 6-monooxygenase bound to flavin adenine dinucleotide

2,4-dichlorophenol 6-monooxygenaseFlavin adenine dinucleotide experimental SAS data
DAMMIN model
Sample: 2,4-dichlorophenol 6-monooxygenase hexamer, 399 kDa Streptomyces sp. SCSIO … protein
Flavin adenine dinucleotide hexamer, 5 kDa
Buffer: 20 mM Tris, 150 mM NaCl, 5 mM DTT, 2% glycerol, pH: 7.5
Experiment: SAXS data collected at Xenocs BioXolver L with MetalJet, Département de Biochimie, Université de Montréal on 2019 Oct 22
Structural analyses of the group A flavin-dependent monooxygenase PieE reveal a sliding FAD cofactor conformation bridging OUT and IN conformations. J Biol Chem (2020)
Manenda MS, Picard MÈ, Zhang L, Cyr N, Zhu X, Barma J, Pascal JM, Couture M, Zhang C, Shi R
RgGuinier 4.8 nm
Dmax 13.2 nm
VolumePorod 624 nm3

SASDFD5 – Tetracycline repressor (class D), TetR(D)

Tetracycline repressor (class D) experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Tetracycline repressor (class D) dimer, 47 kDa Escherichia coli protein
Buffer: 50 mM Tris/HCl 150 mM NaCl 10 mM MgCl2, pH: 8
Experiment: SAXS data collected at EMBL P12, PETRA III on 2013 Sep 23
Thermodynamics, cooperativity and stability of the tetracycline repressor (TetR) upon tetracycline binding. Biochim Biophys Acta Proteins Proteom :140404 (2020)
Palm GJ, Buchholz I, Werten S, Girbardt B, Berndt L, Delcea M, Hinrichs W
RgGuinier 2.6 nm
Dmax 7.7 nm
VolumePorod 85 nm3

SASDFE5 – Tetracycline repressor (class D), TetR(D), in complex with 5a,6-anhydrotetracycline (ATc)

Tetracycline repressor (class D)5a,6-anhydrotetracycline experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Tetracycline repressor (class D) dimer, 47 kDa Escherichia coli protein
5a,6-anhydrotetracycline dimer, 1 kDa
Buffer: 50 mM Tris/HCl 150 mM NaCl 10 mM MgCl2, pH: 8
Experiment: SAXS data collected at EMBL P12, PETRA III on 2013 Sep 23
Thermodynamics, cooperativity and stability of the tetracycline repressor (TetR) upon tetracycline binding. Biochim Biophys Acta Proteins Proteom :140404 (2020)
Palm GJ, Buchholz I, Werten S, Girbardt B, Berndt L, Delcea M, Hinrichs W
RgGuinier 2.6 nm
Dmax 6.8 nm
VolumePorod 77 nm3

SASDGA5 – The C-terminal cell-surface signaling domain of the Pseudomonas capeferrum anti-sigma regulator PupR

PupR protein experimental SAS data
MULTIFOXS model
Sample: PupR protein monomer, 24 kDa Pseudomonas putida protein
Buffer: 25 mM HEPES 400 mM LiCl 10% v/v glycerol, pH: 7.5
Experiment: SAXS data collected at BioCAT 18ID, Advanced Photon Source (APS), Argonne National Laboratory on 2016 Mar 16
Structural basis of cell surface signaling by a conserved sigma regulator in Gram-negative bacteria. J Biol Chem (2020)
Jensen JL, Jernberg BD, Sinha S, Colbert CL
RgGuinier 2.2 nm
Dmax 7.5 nm
VolumePorod 49 nm3

SASDGU5 – The C-terminal cell-surface signaling domain of the Pseudomonas capeferrum anti-sigma regulator PupR in complex with the outer membrane transporter PupB N-terminal signaling domain

PupR proteinFerric-pseudobactin BN7/BN8 receptor experimental SAS data
DAMFILT model
Sample: PupR protein monomer, 24 kDa Pseudomonas putida protein
Ferric-pseudobactin BN7/BN8 receptor monomer, 8 kDa Pseudomonas putida protein
Buffer: 25 mM HEPES 400 mM LiCl 10% v/v glycerol, pH: 7.5
Experiment: SAXS data collected at BioCAT 18ID, Advanced Photon Source (APS), Argonne National Laboratory on 2016 Mar 16
Structural basis of cell surface signaling by a conserved sigma regulator in Gram-negative bacteria. J Biol Chem (2020)
Jensen JL, Jernberg BD, Sinha S, Colbert CL
RgGuinier 2.5 nm
Dmax 8.7 nm
VolumePorod 56 nm3

SASDH45 – Histone Deacetylase 1 (HDAC1) and Lysine-specific Demethylase 1 (LSD1) in the complex with CoREST

Histone deacetylase 1Lysine-specific histone demethylase 1AREST corepressor 1 experimental SAS data
DAMFILT model
Sample: Histone deacetylase 1 monomer, 55 kDa Homo sapiens protein
Lysine-specific histone demethylase 1A monomer, 93 kDa Homo sapiens protein
REST corepressor 1 monomer, 46 kDa Homo sapiens protein
Buffer: 25 mM Tris/Cl, 50 mM potassium acetate and 0.5 mM TCEP, pH: 7.5
Experiment: SAXS data collected at B21, Diamond Light Source on 2015 Jan 23
Mechanism of Crosstalk between the LSD1 Demethylase and HDAC1 Deacetylase in the CoREST Complex. Cell Rep 30(8):2699-2711.e8 (2020)
Song Y, Dagil L, Fairall L, Robertson N, Wu M, Ragan TJ, Savva CG, Saleh A, Morone N, Kunze MBA, Jamieson AG, Cole PA, Hansen DF, Schwabe JWR
RgGuinier 6.0 nm
Dmax 15.8 nm
VolumePorod 437 nm3

SASDGC6 – Glucuronoyl esterase, deglycolsylated full length

4-O-methyl-glucuronoyl methylesterase (Glucuronoyl esterase) experimental SAS data
DAMMIN model
Sample: 4-O-methyl-glucuronoyl methylesterase (Glucuronoyl esterase) monomer, 51 kDa Cerrena unicolor protein
Buffer: 20 mM sodium acetate, pH: 5
Experiment: SAXS data collected at Xenocs BioXolver L with GeniX3D, University of Copenhagen, Department of Drug Design and Pharmacology on 2018 Oct 10
The structural basis of fungal glucuronoyl esterase activity on natural substrates. Nat Commun 11(1):1026 (2020)
Ernst HA, Mosbech C, Langkilde AE, Westh P, Meyer AS, Agger JW, Larsen S
RgGuinier 3.2 nm
Dmax 11.0 nm
VolumePorod 71 nm3

SASDGD6 – Glucuronoyl esterase S286A, deglycolsylated truncated (amino acids 95-474)

4-O-methyl-glucuronoyl methylesterase (Glucuronoyl esterase, truncated) experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: 4-O-methyl-glucuronoyl methylesterase (Glucuronoyl esterase, truncated) monomer, 43 kDa Cerrena unicolor protein
Buffer: 20 mM sodium acetate, pH: 5
Experiment: SAXS data collected at Xenocs BioXolver L with GeniX3D, University of Copenhagen, Department of Drug Design and Pharmacology on 2018 Oct 10
The structural basis of fungal glucuronoyl esterase activity on natural substrates. Nat Commun 11(1):1026 (2020)
Ernst HA, Mosbech C, Langkilde AE, Westh P, Meyer AS, Agger JW, Larsen S
RgGuinier 2.0 nm
Dmax 6.1 nm
VolumePorod 50 nm3

SASDHL4 – N-terminal domains 1-5 of the cation-independent mannose-6-phosphate receptor (CI-MPR)

Cation-independent mannose-6-phosphate receptor experimental SAS data
Cation-independent mannose-6-phosphate receptor Kratky plot
Sample: Cation-independent mannose-6-phosphate receptor monomer, 81 kDa Homo sapiens protein
Buffer: 20 mM imidazole, 150 mM NaCl, 5 mM beta glycerol phosphate, 10 mM MnCl2, pH: 6.4
Experiment: SAXS data collected at BioCAT 18ID, Advanced Photon Source (APS), Argonne National Laboratory on 2017 Oct 12
Allosteric regulation of lysosomal enzyme recognition by the cation-independent mannose 6-phosphate receptor. Commun Biol 3(1):498 (2020)
Olson LJ, Misra SK, Ishihara M, Battaile KP, Grant OC, Sood A, Woods RJ, Kim JP, Tiemeyer M, Ren G, Sharp JS, Dahms NM
RgGuinier 3.7 nm
Dmax 10.1 nm
VolumePorod 140 nm3

SASDHM4 – N-terminal domains 1-5 of the cation-independent mannose-6-phosphate receptor (CI-MPR) from SEC-SAXS

Cation-independent mannose-6-phosphate receptor experimental SAS data
Cation-independent mannose-6-phosphate receptor Kratky plot
Sample: Cation-independent mannose-6-phosphate receptor monomer, 81 kDa Homo sapiens protein
Buffer: 20 mM imidazole, 150 mM NaCl, 5 mM beta glycerol phosphate, 10 mM MnCl2, pH: 6.4
Experiment: SAXS data collected at BioCAT 18ID, Advanced Photon Source (APS), Argonne National Laboratory on 2017 Nov 12
Allosteric regulation of lysosomal enzyme recognition by the cation-independent mannose 6-phosphate receptor. Commun Biol 3(1):498 (2020)
Olson LJ, Misra SK, Ishihara M, Battaile KP, Grant OC, Sood A, Woods RJ, Kim JP, Tiemeyer M, Ren G, Sharp JS, Dahms NM
RgGuinier 3.7 nm
Dmax 13.5 nm
VolumePorod 147 nm3