Browse by MODEL: Hybrid

SASDHX8 – Human serum albumin/Neprilysin fusion protein (HSA-NEP): 10 mM histidine, pH 6.5

Neprilysin - G400V mutantHuman serum albumin - C58S mutant experimental SAS data
EOM/RANCH model
Sample: Neprilysin - G400V mutant monomer, 80 kDa Homo sapiens protein
Human serum albumin - C58S mutant monomer, 66 kDa Homo sapiens protein
Buffer: 10 mM histidine, pH: 6.5
Experiment: SAXS data collected at EMBL P12, PETRA III on 2018 Jul 7
Albumin-neprilysin fusion protein: understanding stability using small angle X-ray scattering and molecular dynamic simulations. Sci Rep 10(1):10089 (2020)
Kulakova A, Indrakumar S, Sønderby Tuelung P, Mahapatra S, Streicher WW, Peters GHJ, Harris P
RgGuinier 4.6 nm
Dmax 16.0 nm
VolumePorod 258 nm3

SASDHY8 – Human serum albumin/Neprilysin fusion protein (HSA-NEP): 10 mM histidine, pH 7.5

Neprilysin - G400V mutantHuman serum albumin - C58S mutant experimental SAS data
EOM/RANCH model
Sample: Neprilysin - G400V mutant monomer, 80 kDa Homo sapiens protein
Human serum albumin - C58S mutant monomer, 66 kDa Homo sapiens protein
Buffer: 10 mM histidine, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2017 Jun 26
Albumin-neprilysin fusion protein: understanding stability using small angle X-ray scattering and molecular dynamic simulations. Sci Rep 10(1):10089 (2020)
Kulakova A, Indrakumar S, Sønderby Tuelung P, Mahapatra S, Streicher WW, Peters GHJ, Harris P
RgGuinier 5.0 nm
Dmax 17.4 nm
VolumePorod 270 nm3

SASDHZ8 – Human serum albumin/Neprilysin fusion protein (HSA-NEP): 10 mM TRIS, pH 8.5

Neprilysin - G400V mutantHuman serum albumin - C58S mutant experimental SAS data
EOM/RANCH model
Sample: Neprilysin - G400V mutant monomer, 80 kDa Homo sapiens protein
Human serum albumin - C58S mutant monomer, 66 kDa Homo sapiens protein
Buffer: 10 mM TRIS, pH: 8.5
Experiment: SAXS data collected at EMBL P12, PETRA III on 2018 Dec 15
Albumin-neprilysin fusion protein: understanding stability using small angle X-ray scattering and molecular dynamic simulations. Sci Rep 10(1):10089 (2020)
Kulakova A, Indrakumar S, Sønderby Tuelung P, Mahapatra S, Streicher WW, Peters GHJ, Harris P
RgGuinier 4.9 nm
Dmax 16.7 nm
VolumePorod 239 nm3

SASDH29 – Human serum albumin/Neprilysin fusion protein (HSA-NEP): 10 mM phosphate, pH 6.5

Neprilysin - G400V mutantHuman serum albumin - C58S mutant experimental SAS data
EOM/RANCH model
Sample: Neprilysin - G400V mutant monomer, 80 kDa Homo sapiens protein
Human serum albumin - C58S mutant monomer, 66 kDa Homo sapiens protein
Buffer: 10 mM phosphate, pH: 6.5
Experiment: SAXS data collected at EMBL P12, PETRA III on 2018 Jul 7
Albumin-neprilysin fusion protein: understanding stability using small angle X-ray scattering and molecular dynamic simulations. Sci Rep 10(1):10089 (2020)
Kulakova A, Indrakumar S, Sønderby Tuelung P, Mahapatra S, Streicher WW, Peters GHJ, Harris P
RgGuinier 4.9 nm
Dmax 16.7 nm
VolumePorod 240 nm3

SASDHG4 – NopAA, a type three effector from Sinorhizobium fredii USDA257 whith xyloglucanase activity

Type III effector NopAA experimental SAS data
ALLOSMOD model
Sample: Type III effector NopAA monomer, 31 kDa Sinorhizobium fredii USDA257 protein
Buffer: PBS, 150 mM NaCl, 10% glycerol, pH: 7.4
Experiment: SAXS data collected at SWING, SOLEIL on 2014 Dec 17
Structural and enzymatic characterisation of the Type III effector NopAA (=GunA) from Sinorhizobium fredii USDA257 reveals a Xyloglucan hydrolase activity. Sci Rep 10(1):9932 (2020)
Dorival J, Philys S, Giuntini E, Brailly R, de Ruyck J, Czjzek M, Biondi E, Bompard C
RgGuinier 2.4 nm
Dmax 9.9 nm
VolumePorod 38 nm3

SASDFP5 – DNA-binding protein HU-alpha bound to 80 base-pair DNA at pH 7.5 with 50 mM NaCl

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha experimental SAS data
CHIMERA model
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha 16-mer, 153 kDa Escherichia coli protein
Buffer: 10 mM Bis-Tris, 50 mM NaCl, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 May 27
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M
RgGuinier 8.9 nm
Dmax 28.5 nm
VolumePorod 410 nm3

SASDFQ5 – DNA-binding protein HU-alpha bound to 80 base-pair DNA at pH 7.5 with 100 mM NaCl

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha experimental SAS data
CHIMERA model
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha 16-mer, 153 kDa Escherichia coli protein
Buffer: 10 mM Bis-Tris, 100 mM NaCl, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 Jun 1
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M
RgGuinier 6.6 nm
Dmax 25.0 nm
VolumePorod 336 nm3

SASDFR5 – DNA-binding protein HU-alpha bound to 80 base-pair DNA at pH 7.5 with 150 mM NaCl

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha experimental SAS data
CHIMERA model
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha 14-mer, 133 kDa Escherichia coli protein
Buffer: 10 mM Bis-Tris, 150 mM NaCl, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 Jun 1
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M
RgGuinier 5.8 nm
Dmax 24.2 nm
VolumePorod 308 nm3

SASDFS5 – DNA-binding protein HU-alpha bound to 80 base-pair DNA at pH 7.5 with 300 mM NaCl

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha experimental SAS data
CHIMERA model
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha decamer, 95 kDa Escherichia coli protein
Buffer: 10 mM Bis-Tris, 300 mM NaCl, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 Jun 1
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M
RgGuinier 6.5 nm
Dmax 24.0 nm
VolumePorod 242 nm3

SASDFU5 – DNA-binding protein HU-alpha bound to 80 base-pair DNA at pH 6.5 with 100 mM NaCl

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha experimental SAS data
CHIMERA model
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha 14-mer, 133 kDa Escherichia coli protein
Buffer: 10 mM Bis-Tris, 100 mM NaCl, pH: 6.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 Jun 1
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M
RgGuinier 6.2 nm
Dmax 24.4 nm
VolumePorod 274 nm3