SASDNP2 – Experimental SAXS data for hemoglobin conjucted with six-seven copies of PEG dimer (Hb5)

Human hemoglobin conjugated with six-seven copies of 5-kDa PEG experimental SAS data
GASBOR model
Sample: Human hemoglobin conjugated with six-seven copies of 5-kDa PEG dimer, 62 kDa Homo sapiens protein
Buffer: Ringer's lactate solution, pH: 6.5
Experiment: SAXS data collected at EMBL X33, DORIS III, DESY on 2006 Feb 19
Solution Structure of Poly(ethylene) Glycol-Conjugated Hemoglobin Revealed by Small-Angle X-Ray Scattering: Implications for a New Oxygen Therapeutic Biophysical Journal 94(1):173-181 (2008)
Svergun D, Ekström F, Vandegriff K, Malavalli A, Baker D, Nilsson C, Winslow R
RgGuinier 3.3 nm
Dmax 13.0 nm

SASDNQ2 – Experimental SAXS data for hemoglobin conjucted with two copies of PEG dimer (Hb2) at concentration c = 25 mg/ml

Human hemoglobin conjugated with two copies of 5-kDa PEG experimental SAS data
Human hemoglobin conjugated with two copies of 5-kDa PEG Kratky plot
Sample: Human hemoglobin conjugated with two copies of 5-kDa PEG dimer, 62 kDa Homo sapiens protein
Buffer: Ringer's lactate solution, pH: 6.5
Experiment: SAXS data collected at EMBL X33, DORIS III, DESY on 2006 Feb 19
Solution Structure of Poly(ethylene) Glycol-Conjugated Hemoglobin Revealed by Small-Angle X-Ray Scattering: Implications for a New Oxygen Therapeutic Biophysical Journal 94(1):173-181 (2008)
Svergun D, Ekström F, Vandegriff K, Malavalli A, Baker D, Nilsson C, Winslow R
RgGuinier 2.4 nm

SASDNR2 – Experimental SAXS data for hemoglobin conjucted with two copies of PEG dimer (Hb2)

Human hemoglobin conjugated with two copies of 5-kDa PEG experimental SAS data
GASBOR model
Sample: Human hemoglobin conjugated with two copies of 5-kDa PEG dimer, 62 kDa Homo sapiens protein
Buffer: Ringer's lactate solution, pH: 6.5
Experiment: SAXS data collected at EMBL X33, DORIS III, DESY on 2006 Feb 19
Solution Structure of Poly(ethylene) Glycol-Conjugated Hemoglobin Revealed by Small-Angle X-Ray Scattering: Implications for a New Oxygen Therapeutic Biophysical Journal 94(1):173-181 (2008)
Svergun D, Ekström F, Vandegriff K, Malavalli A, Baker D, Nilsson C, Winslow R
RgGuinier 2.8 nm
Dmax 13.0 nm

SASDNS2 – Experimental SAXS data for native hemoglobin (Hb) at concentration c = 5 mg/ml

Hemoglobin subunit alphaHemoglobin subunit beta experimental SAS data
GASBOR model
Sample: Hemoglobin subunit alpha monomer, 15 kDa Homo sapiens protein
Hemoglobin subunit beta monomer, 16 kDa Homo sapiens protein
Buffer: Ringer's lactate solution, pH: 6.5
Experiment: SAXS data collected at EMBL X33, DORIS III, DESY on 2006 Feb 19
Solution Structure of Poly(ethylene) Glycol-Conjugated Hemoglobin Revealed by Small-Angle X-Ray Scattering: Implications for a New Oxygen Therapeutic Biophysical Journal 94(1):173-181 (2008)
Svergun D, Ekström F, Vandegriff K, Malavalli A, Baker D, Nilsson C, Winslow R
RgGuinier 2.4 nm
Dmax 13.0 nm

SASDNT2 – Experimental SAXS data for native hemoglobin (Hb) at concentration c = 31.25 mg/ml

Hemoglobin subunit alphaHemoglobin subunit beta experimental SAS data
Hemoglobin subunit alpha Hemoglobin subunit beta Kratky plot
Sample: Hemoglobin subunit alpha monomer, 15 kDa Homo sapiens protein
Hemoglobin subunit beta monomer, 16 kDa Homo sapiens protein
Buffer: Ringer's lactate solution, pH: 6.5
Experiment: SAXS data collected at EMBL X33, DORIS III, DESY on 2006 Feb 19
Solution Structure of Poly(ethylene) Glycol-Conjugated Hemoglobin Revealed by Small-Angle X-Ray Scattering: Implications for a New Oxygen Therapeutic Biophysical Journal 94(1):173-181 (2008)
Svergun D, Ekström F, Vandegriff K, Malavalli A, Baker D, Nilsson C, Winslow R
RgGuinier 2.2 nm

SASDH43 – N-terminal domains of the inositol 1,4,5-trisphosphate receptor type 1 (IP3RN)

N-terminal domains of the inositol 1,4,5-trisphosphate receptor type 1 experimental SAS data
BUNCH model
Sample: N-terminal domains of the inositol 1,4,5-trisphosphate receptor type 1 monomer, 70 kDa Mus musculus protein
Buffer: 15 mM Tris, 300 mM NaCl, 1 mM TCEP, 5 mM EGTA, pH: 8
Experiment: SAXS data collected at Bruker Nanostar II, Australian Nuclear Science and Technology Organisation/Australian Centre for Neutron Scattering on 2006 Apr 12
Ligand-induced conformational changes via flexible linkers in the amino-terminal region of the inositol 1,4,5-trisphosphate receptor. J Mol Biol 373(5):1269-80 (2007)
Chan J, Whitten AE, Jeffries CM, Bosanac I, Mal TK, Ito J, Porumb H, Michikawa T, Mikoshiba K, Trewhella J, Ikura M
RgGuinier 3.2 nm
Dmax 10.0 nm
VolumePorod 135 nm3

SASDH53 – N-terminal domains of the inositol 1,4,5-trisphosphate receptor type 1 (IP3RN) with calcium

N-terminal domains of the inositol 1,4,5-trisphosphate receptor type 1 experimental SAS data
BUNCH model
Sample: N-terminal domains of the inositol 1,4,5-trisphosphate receptor type 1 monomer, 70 kDa Mus musculus protein
Buffer: 15 mM Tris, 300 mM NaCl, 1 mM TCEP, 10 mM CaCl2, pH: 8
Experiment: SAXS data collected at Bruker Nanostar II, Australian Nuclear Science and Technology Organisation/Australian Centre for Neutron Scattering on 2006 Apr 12
Ligand-induced conformational changes via flexible linkers in the amino-terminal region of the inositol 1,4,5-trisphosphate receptor. J Mol Biol 373(5):1269-80 (2007)
Chan J, Whitten AE, Jeffries CM, Bosanac I, Mal TK, Ito J, Porumb H, Michikawa T, Mikoshiba K, Trewhella J, Ikura M
RgGuinier 3.4 nm
Dmax 11.0 nm
VolumePorod 160 nm3

SASDH63 – N-terminal domains of the inositol 1,4,5-trisphosphate receptor type 1 (IP3RN) with bound inositol 1,4,5-trisphosphate (IP3)

N-terminal domains of the inositol 1,4,5-trisphosphate receptor type 1 experimental SAS data
BUNCH model
Sample: N-terminal domains of the inositol 1,4,5-trisphosphate receptor type 1 monomer, 70 kDa Mus musculus protein
Buffer: 15 mM Tris, 300 mM NaCl, 1 mM TCEP, 5 mM EGTA, 0.25 mM IP3, pH: 8
Experiment: SAXS data collected at Bruker Nanostar II, Australian Nuclear Science and Technology Organisation/Australian Centre for Neutron Scattering on 2006 Apr 12
Ligand-induced conformational changes via flexible linkers in the amino-terminal region of the inositol 1,4,5-trisphosphate receptor. J Mol Biol 373(5):1269-80 (2007)
Chan J, Whitten AE, Jeffries CM, Bosanac I, Mal TK, Ito J, Porumb H, Michikawa T, Mikoshiba K, Trewhella J, Ikura M
RgGuinier 3.1 nm
Dmax 8.8 nm
VolumePorod 115 nm3

SASDH73 – N-terminal domains of the inositol 1,4,5-trisphosphate receptor type 1 (IP3RN) with bound inositol 1,4,5-trisphosphate (IP3) plus calcium

N-terminal domains of the inositol 1,4,5-trisphosphate receptor type 1 experimental SAS data
BUNCH model
Sample: N-terminal domains of the inositol 1,4,5-trisphosphate receptor type 1 monomer, 70 kDa Mus musculus protein
Buffer: 15 mM Tris, 300 mM NaCl, 1 mM TCEP, 10 mM CaCl2, 0.25 mM IP3, pH: 8
Experiment: SAXS data collected at Bruker Nanostar II, Australian Nuclear Science and Technology Organisation/Australian Centre for Neutron Scattering on 2006 Apr 12
Ligand-induced conformational changes via flexible linkers in the amino-terminal region of the inositol 1,4,5-trisphosphate receptor. J Mol Biol 373(5):1269-80 (2007)
Chan J, Whitten AE, Jeffries CM, Bosanac I, Mal TK, Ito J, Porumb H, Michikawa T, Mikoshiba K, Trewhella J, Ikura M
RgGuinier 3.2 nm
Dmax 9.6 nm
VolumePorod 132 nm3

SASDMB7 – Glucosamine-6-phosphate Synthase from Candida albicans

N-acetylglucosamine kinase 1 experimental SAS data
DAMMIN model
Sample: N-acetylglucosamine kinase 1 tetramer, 219 kDa Candida albicans (strain … protein
Buffer: 0.2 M magnesium acetate, 0.1 M sodium cacodylate, pH: 6.5
Experiment: SAXS data collected at EMBL X33, DORIS III, DESY on 2005 Apr 28
The crystal and solution studies of glucosamine-6-phosphate synthase from Candida albicans. J Mol Biol 372(3):672-88 (2007)
Raczynska J, Olchowy J, Konariev PV, Svergun DI, Milewski S, Rypniewski W
RgGuinier 5.1 nm
Dmax 16.0 nm
VolumePorod 421 nm3

4135 hits found.