Browse by MODEL: Hybrid

SASDFW7 – Aquifex aeolicus McoA metaloxidase deletion mutant ∆328-352 (MCoA∆328-352)

Aquifex aeolicus McoA metaloxidase ∆328-352  (MCoA∆328-352) experimental SAS data
DAMFILT model
Sample: Aquifex aeolicus McoA metaloxidase ∆328-352 (MCoA∆328-352) monomer, 53 kDa Aquifex aeolicus protein
Buffer: 50 mM Tris-HCl, 150 mM NaCl, 2 mM TCEP, pH: 7.5
Experiment: SAXS data collected at BM29, ESRF on 2017 Jul 13
The Methionine-Rich Loop of Multicopper Oxidase McoA follows Open-To-Close Transitions with a Role in Enzyme Catalysis ACS Catalysis (2020)
Borges P, Brissos V, Hernandez G, Masgrau L, Lucas M, Monza E, Frazão C, Cordeiro T, Martins L
RgGuinier 2.3 nm
Dmax 6.9 nm
VolumePorod 77 nm3

SASDFX7 – Aquifex aeolicus McoA metaloxidase deletion mutant ∆337-346 (MCoA∆337-346)

Aquifex aeolicus McoA metaloxidase ∆337-346 experimental SAS data
DAMMIF model
Sample: Aquifex aeolicus McoA metaloxidase ∆337-346 monomer, 54 kDa Aquifex aeolicus protein
Buffer: 50 mM Tris-HCl, 150 mM NaCl, 2 mM TCEP, pH: 7.5
Experiment: SAXS data collected at B21, Diamond Light Source on 2017 Dec 4
The Methionine-Rich Loop of Multicopper Oxidase McoA follows Open-To-Close Transitions with a Role in Enzyme Catalysis ACS Catalysis (2020)
Borges P, Brissos V, Hernandez G, Masgrau L, Lucas M, Monza E, Frazão C, Cordeiro T, Martins L
RgGuinier 2.3 nm
Dmax 7.0 nm
VolumePorod 78 nm3

SASDFY7 – Aquifex aeolicus McoA metaloxidase

Aquifex aeolicus McoA metaloxidase experimental SAS data
DAMFILT model
Sample: Aquifex aeolicus McoA metaloxidase monomer, 55 kDa Aquifex aeolicus protein
Buffer: 50 mM Tris-HCl, 150 mM NaCl, 2 mM TCEP, pH: 7.5
Experiment: SAXS data collected at B21, Diamond Light Source on 2019 Apr 15
The Methionine-Rich Loop of Multicopper Oxidase McoA follows Open-To-Close Transitions with a Role in Enzyme Catalysis ACS Catalysis (2020)
Borges P, Brissos V, Hernandez G, Masgrau L, Lucas M, Monza E, Frazão C, Cordeiro T, Martins L
RgGuinier 2.3 nm
Dmax 7.5 nm
VolumePorod 79 nm3

SASDH92 – Plasmodium falciparum lipocalin (PF3D7_0925900): Dimer-tetramer equilibrium through a concentration series (combined batch and SEC-SAXS measurements)

Plasmodium falciparum Lipocalin experimental SAS data
SASREF MX model
Sample: Plasmodium falciparum Lipocalin tetramer, 89 kDa Plasmodium falciparum protein
Buffer: 20 mM Tris pH7.5, 150 mM NaCl, 5% v/v glycerol, pH: 7.5
Experiment: SAXS data collected at EMBL P12, PETRA III on 2019 Apr 8
Structure-Based Identification and Functional Characterization of a Lipocalin in the Malaria Parasite Plasmodium falciparum Cell Reports 31(12):107817 (2020)
Burda P, Crosskey T, Lauk K, Zurborg A, Söhnchen C, Liffner B, Wilcke L, Pietsch E, Strauss J, Jeffries C, Svergun D, Wilson D, Wilmanns M, Gilberger T
RgGuinier 3.2 nm
Dmax 10.3 nm
VolumePorod 126 nm3

SASDG37 – 1:2 heterotrimer of pUL7 and pUL51(8-142) from herpes simplex virus 1

Tegument protein UL7Tegument protein UL51 experimental SAS data
DAMMIN model
Sample: Tegument protein UL7 monomer, 34 kDa Human alphaherpesvirus 1 … protein
Tegument protein UL51 dimer, 30 kDa Human alphaherpesvirus 1 … protein
Buffer: 20 mM tris, 200 mM NaCl, 3% (v/v) glycerol, 0.25 mM TCEP, pH: 7.5
Experiment: SAXS data collected at EMBL P12, PETRA III on 2019 May 16
Insights into herpesvirus assembly from the structure of the pUL7:pUL51 complex. Elife 9 (2020)
Butt BG, Owen DJ, Jeffries CM, Ivanova L, Hill CH, Houghton JW, Ahmed MF, Antrobus R, Svergun DI, Welch JJ, Crump CM, Graham SC
RgGuinier 3.0 nm
Dmax 11.5 nm
VolumePorod 116 nm3

SASDHN8 – Human tumor necrosis factor receptor superfamily member 5 (CD40) extracellular domain in complex with human immunoglobulin gamma 1 (IgG1) 341G2 F(ab)

Tumor necrosis factor receptor superfamily member 5Human 341G2 F(ab) experimental SAS data
HADDOCK model
Sample: Tumor necrosis factor receptor superfamily member 5 monomer, 19 kDa Homo sapiens protein
Human 341G2 F(ab) monomer, 73 kDa Homo sapiens protein
Buffer: Phosphate-buffered saline, pH: 7
Experiment: SAXS data collected at B21, Diamond Light Source on 2019 Sep 18
Isotype Switching Converts Anti-CD40 Antagonism to Agonism to Elicit Potent Antitumor Activity Cancer Cell (2020)
Yu X, Chan H, Fisher H, Penfold C, Kim J, Inzhelevskaya T, Mockridge C, French R, Duriez P, Douglas L, English V, Verbeek J, White A, Tews I, Glennie M, Cragg M
RgGuinier 3.7 nm
Dmax 13.4 nm
VolumePorod 97 nm3

SASDGG2 – Interleukin 11 receptor subunit alpha

Interleukin-11 receptor subunit alpha experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Interleukin-11 receptor subunit alpha monomer, 32 kDa Homo sapiens protein
Buffer: 20 mM Tris, 150 mM NaCl, 0.2% sodium azide, pH: 8.5
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2019 Jun 8
The structure of the extracellular domains of human interleukin 11 α-receptor reveals mechanisms of cytokine engagement Journal of Biological Chemistry :jbc.RA119.012351 (2020)
Metcalfe R, Aizel K, Zlatic C, Nguyen P, Morton C, Lio D, Cheng H, Dobson R, Parker M, Gooley P, Putoczki T, Griffin M
RgGuinier 3.0 nm
Dmax 9.5 nm
VolumePorod 41 nm3

SASDGH2 – Interleukin 11, N-terminally truncated

Interleukin 11 experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Interleukin 11 monomer, 18 kDa Homo sapiens protein
Buffer: 20 mM Tris, 150 mM NaCl, 0.2% sodium azide, pH: 8.5
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2019 Jun 8
The structure of the extracellular domains of human interleukin 11 α-receptor reveals mechanisms of cytokine engagement Journal of Biological Chemistry :jbc.RA119.012351 (2020)
Metcalfe R, Aizel K, Zlatic C, Nguyen P, Morton C, Lio D, Cheng H, Dobson R, Parker M, Gooley P, Putoczki T, Griffin M
RgGuinier 1.7 nm
Dmax 5.4 nm
VolumePorod 22 nm3

SASDGJ2 – Interleukin 11, full length

Interleukin 11 experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Interleukin 11 monomer, 19 kDa Homo sapiens protein
Buffer: 20 mM Tris, 150 mM NaCl, 0.2% sodium azide, pH: 8.5
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2019 Jun 8
The structure of the extracellular domains of human interleukin 11 α-receptor reveals mechanisms of cytokine engagement Journal of Biological Chemistry :jbc.RA119.012351 (2020)
Metcalfe R, Aizel K, Zlatic C, Nguyen P, Morton C, Lio D, Cheng H, Dobson R, Parker M, Gooley P, Putoczki T, Griffin M
RgGuinier 1.9 nm
Dmax 6.1 nm
VolumePorod 28 nm3

SASDGK2 – Interleukin 11/Interleukin 11 receptor alpha complex

Interleukin-11 receptor subunit alphaInterleukin 11 experimental SAS data
OTHER model
Sample: Interleukin-11 receptor subunit alpha monomer, 32 kDa Homo sapiens protein
Interleukin 11 monomer, 18 kDa Homo sapiens protein
Buffer: 20 mM Tris, 150 mM NaCl, 0.2% sodium azide, pH: 8.5
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2019 Jun 8
The structure of the extracellular domains of human interleukin 11 α-receptor reveals mechanisms of cytokine engagement Journal of Biological Chemistry :jbc.RA119.012351 (2020)
Metcalfe R, Aizel K, Zlatic C, Nguyen P, Morton C, Lio D, Cheng H, Dobson R, Parker M, Gooley P, Putoczki T, Griffin M
RgGuinier 3.3 nm
Dmax 10.2 nm
VolumePorod 84 nm3