Browse by ORGANISM: Mus musculus (Mouse)

SASDJD9 – Insulin gene enhancer protein Isl-1 homeodomain (Isl1-HD) fused to the LIM/homeobox protein Lhx3 homeodomain (Lhx3-HD): 2HD

Insulin gene enhancer protein ISL-1LIM/homeobox protein Lhx3 experimental SAS data
MONSA model
Sample: Insulin gene enhancer protein ISL-1 monomer, 12 kDa Mus musculus protein
LIM/homeobox protein Lhx3 monomer, 9 kDa Mus musculus protein
Buffer: 20 mM sodium phosphate monobasic/dibasic, 100 mM NaCl, 1 mM DTT, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2018 Nov 2
Contrasting DNA-binding behaviour by ISL1 and LHX3 underpins differential gene targeting in neuronal cell specification Journal of Structural Biology: X :100043 (2020)
Smith N, Wilkinson-White L, Kwan A, Trewhella J, Matthews J
RgGuinier 3.4 nm
Dmax 12.7 nm
VolumePorod 40 nm3

SASDJE9 – Insulin gene enhancer protein Isl-1 homeodomain/LIM-interaction domain (Isl1-HDLID) fused to the LIM/homeobox protein Lhx3 LIM-homeodomain (Lhx3-LIMHD): 2HDLL

Insulin gene enhancer protein ISL-1LIM/homeobox protein Lhx3 experimental SAS data
MONSA model
Sample: Insulin gene enhancer protein ISL-1 monomer, 14 kDa Mus musculus protein
LIM/homeobox protein Lhx3 monomer, 23 kDa Mus musculus protein
Buffer: 20 mM sodium phosphate monobasic/dibasic, 100 mM NaCl, 1 mM DTT, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2018 Nov 2
Contrasting DNA-binding behaviour by ISL1 and LHX3 underpins differential gene targeting in neuronal cell specification Journal of Structural Biology: X :100043 (2020)
Smith N, Wilkinson-White L, Kwan A, Trewhella J, Matthews J
RgGuinier 3.4 nm
Dmax 13.0 nm
VolumePorod 76 nm3

SASDJF9 – M100 DNA oligonucleotide bound to the LIM/homeobox protein Lhx3 homeodomain (Lhx3-HD): M100 + HD3

M100 oligonucleotideLIM/homeobox protein Lhx3 experimental SAS data
MONSA model
Sample: M100 oligonucleotide monomer, 12 kDa DNA
LIM/homeobox protein Lhx3 monomer, 10 kDa Mus musculus protein
Buffer: 20 mM sodium phosphate monobasic/dibasic, 100 mM NaCl, 1 mM DTT, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2018 Nov 2
Contrasting DNA-binding behaviour by ISL1 and LHX3 underpins differential gene targeting in neuronal cell specification Journal of Structural Biology: X :100043 (2020)
Smith N, Wilkinson-White L, Kwan A, Trewhella J, Matthews J
RgGuinier 2.1 nm
Dmax 7.0 nm
VolumePorod 27 nm3

SASDJG9 – M100 DNA oligonucleotide bound to the protein fusion of Insulin gene enhancer protein Isl-1 LIM-interaction domain (Isl1-LID) and LIM/homeobox protein Lhx3 LIM-homeodomain (Lhx3-LIMHD): M100 + LLHD3

M100 oligonucleotideLIM/homeobox protein Lhx3Insulin gene enhancer protein ISL-1 experimental SAS data
MONSA model
Sample: M100 oligonucleotide monomer, 12 kDa DNA
LIM/homeobox protein Lhx3 monomer, 23 kDa Mus musculus protein
Insulin gene enhancer protein ISL-1 monomer, 4 kDa Mus musculus protein
Buffer: 20 mM sodium phosphate monobasic/dibasic, 100 mM NaCl, 1 mM DTT, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2018 Nov 2
Contrasting DNA-binding behaviour by ISL1 and LHX3 underpins differential gene targeting in neuronal cell specification Journal of Structural Biology: X :100043 (2020)
Smith N, Wilkinson-White L, Kwan A, Trewhella J, Matthews J
RgGuinier 3.6 nm
Dmax 13.0 nm
VolumePorod 49 nm3

SASDJH9 – M100 DNA oligonucleotide bound to the protein fusion of Insulin gene enhancer protein Isl-1 homeodomain (Isl1-HD) and LIM/homeobox protein Lhx3 homeodomain (Lhx3-HD): M100 + 2HD

M100 oligonucleotideInsulin gene enhancer protein ISL-1LIM/homeobox protein Lhx3 experimental SAS data
MONSA model
Sample: M100 oligonucleotide monomer, 12 kDa DNA
Insulin gene enhancer protein ISL-1 monomer, 12 kDa Mus musculus protein
LIM/homeobox protein Lhx3 monomer, 9 kDa Mus musculus protein
Buffer: 20 mM sodium phosphate monobasic/dibasic, 100 mM NaCl, 1 mM DTT, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2018 Nov 2
Contrasting DNA-binding behaviour by ISL1 and LHX3 underpins differential gene targeting in neuronal cell specification Journal of Structural Biology: X :100043 (2020)
Smith N, Wilkinson-White L, Kwan A, Trewhella J, Matthews J
RgGuinier 2.4 nm
Dmax 7.5 nm
VolumePorod 41 nm3

SASDJJ9 – M100 DNA oligonucleotide bound to the protein fusion of Insulin gene enhancer protein Isl-1 homeodomain/LIM-interaction domain (Isl1-HDLID) and LIM/homeobox protein Lhx3 LIM-homeodomain (Lhx3-LIMHD): M100 + 2HDLL

M100 oligonucleotideInsulin gene enhancer protein ISL-1LIM/homeobox protein Lhx3 experimental SAS data
MONSA model
Sample: M100 oligonucleotide monomer, 12 kDa DNA
Insulin gene enhancer protein ISL-1 monomer, 14 kDa Mus musculus protein
LIM/homeobox protein Lhx3 monomer, 23 kDa Mus musculus protein
Buffer: 20 mM sodium phosphate monobasic/dibasic, 100 mM NaCl, 1 mM DTT, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2018 Nov 2
Contrasting DNA-binding behaviour by ISL1 and LHX3 underpins differential gene targeting in neuronal cell specification Journal of Structural Biology: X :100043 (2020)
Smith N, Wilkinson-White L, Kwan A, Trewhella J, Matthews J
RgGuinier 3.6 nm
Dmax 14.0 nm
VolumePorod 70 nm3

SASDJR7 – Mouse cysteine sulphinic acid decarboxylase (CSAD)

Cysteine sulfinic acid decarboxylase experimental SAS data
SREFLEX model
Sample: Cysteine sulfinic acid decarboxylase dimer, 117 kDa Mus musculus protein
Buffer: 20 mM HEPES, 200 mM NaCl, pH: 7.5
Experiment: SAXS data collected at SWING, SOLEIL on 2018 Feb 4
Structure and substrate specificity determinants of the taurine biosynthetic enzyme cysteine sulphinic acid decarboxylase. J Struct Biol :107674 (2020)
Mahootchi E, Raasakka A, Luan W, Muruganandam G, Loris R, Haavik J, Kursula P
RgGuinier 3.4 nm
Dmax 15.0 nm
VolumePorod 198 nm3

SASDFT8 – The retinoic acid receptor (RAR-RXR heterodimer) bound to the DNA response element HoxB13 DR0

Retinoic acid receptor alpha, RARRetinoic acid receptor RXR-alphaDNA response element HoxB13 DR0 experimental SAS data
CORAL model
Sample: Retinoic acid receptor alpha, RAR monomer, 41 kDa Mus musculus protein
Retinoic acid receptor RXR-alpha monomer, 38 kDa Mus musculus protein
DNA response element HoxB13 DR0 monomer, 10 kDa DNA
Buffer: 20 mM Tris, pH 8, 150 mM NaCl, 5% v/v glycerol, 1 mM CHAPS, 4 mM MgSO4, 1 mM TCEP, pH: 8
Experiment: SAXS data collected at EMBL P12, PETRA III on 2014 Jan 19
Structural basis for DNA recognition and allosteric control of the retinoic acid receptors RAR–RXR Nucleic Acids Research (2020)
Osz J, McEwen A, Bourguet M, Przybilla F, Peluso-Iltis C, Poussin-Courmontagne P, Mély Y, Cianférani S, Jeffries C, Svergun D, Rochel N
RgGuinier 3.8 nm
Dmax 14.5 nm
VolumePorod 132 nm3

SASDFU8 – The retinoic acid receptor (RAR-RXR heterodimer) bound to the DNA response element F11r DR5.

Retinoic acid receptor alpha, RARRetinoic acid receptor RXR-alphaDNA response element F11r DR5 experimental SAS data
CORAL model
Sample: Retinoic acid receptor alpha, RAR monomer, 41 kDa Mus musculus protein
Retinoic acid receptor RXR-alpha monomer, 38 kDa Mus musculus protein
DNA response element F11r DR5 monomer, 13 kDa DNA
Buffer: 20 mM Tris, pH 8, 150 mM NaCl, 5% v/v glycerol, 1 mM CHAPS, 4 mM MgSO4, 1 mM TCEP, pH: 8
Experiment: SAXS data collected at EMBL P12, PETRA III on 2014 Jan 19
Structural basis for DNA recognition and allosteric control of the retinoic acid receptors RAR–RXR Nucleic Acids Research (2020)
Osz J, McEwen A, Bourguet M, Przybilla F, Peluso-Iltis C, Poussin-Courmontagne P, Mély Y, Cianférani S, Jeffries C, Svergun D, Rochel N
RgGuinier 4.0 nm
Dmax 13.5 nm
VolumePorod 130 nm3

SASDEY9 – Collagen VI von Willebrand factor (VWA) double-domain fragment, N5N4

Collagen, type VI, alpha 3 experimental SAS data
Collagen VI von Willebrand factor (VWA) double-domain fragment, N5N4 Rg histogram
Sample: Collagen, type VI, alpha 3 monomer, 44 kDa Mus musculus protein
Buffer: 20 mM TRIS, 150mM NaCl 3% v/v glycerol, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III on 2018 Apr 20
Structure of a collagen VI α3 chain VWA domain array: adaptability and functional implications of myopathy causing mutations Journal of Biological Chemistry :jbc.RA120.014865 (2020)
Solomon-Degefa H, Gebauer J, Jeffries C, Freiburg C, Meckelburg P, Bird L, Baumann U, Svergun D, Owens R, Werner J, Behrmann E, Paulsson M, Wagener R
RgGuinier 2.9 nm
Dmax 9.9 nm
VolumePorod 66 nm3