|
|
|
Sample: |
Lysozyme amyloid fibril, 1 kDa Gallus gallus protein
Fe3O4 nanoparticles; nominal diameter 10 nm (hydrodynamic diameter) monomer, 1 kDa
|
Buffer: |
0.2 M glycine-HCl, 80 mM NaCl, pH: 2.2 |
Experiment: |
SAXS
data collected at EMBL P12, PETRA III on 2018 Nov 29
|
Dependence of the Nanoscale Composite Morphology of Fe3O4 Nanoparticle-Infused Lysozyme Amyloid Fibrils on Timing of Infusion: A Combined SAXS and AFM Study
Molecules 26(16):4864 (2021)
Schroer M, Hu P, Tomasovicova N, Batkova M, Zakutanska K, Wu P, Kopcansky P
|
RgGuinier |
22.3 |
nm |
Dmax |
70.0 |
nm |
|
|
|
|
|
Sample: |
Lysozyme amyloid fibril, 1 kDa Gallus gallus protein
Fe3O4 nanoparticles; nominal diameter 30 nm (hydrodynamic diameter) monomer, 1 kDa
|
Buffer: |
0.2 M glycine-HCl, 80 mM NaCl, pH: 2.2 |
Experiment: |
SAXS
data collected at EMBL P12, PETRA III on 2018 Nov 29
|
Dependence of the Nanoscale Composite Morphology of Fe3O4 Nanoparticle-Infused Lysozyme Amyloid Fibrils on Timing of Infusion: A Combined SAXS and AFM Study
Molecules 26(16):4864 (2021)
Schroer M, Hu P, Tomasovicova N, Batkova M, Zakutanska K, Wu P, Kopcansky P
|
RgGuinier |
22.5 |
nm |
Dmax |
95.0 |
nm |
|
|
|
|
|
Sample: |
Lysozyme amyloid fibril, 1 kDa Gallus gallus protein
Fe3O4 nanoparticles; nominal diameter 20 nm (hydrodynamic diameter) monomer, 1 kDa
|
Buffer: |
0.2 M glycine-HCl, 80 mM NaCl, pH: 2.2 |
Experiment: |
SAXS
data collected at EMBL P12, PETRA III on 2018 Nov 29
|
Dependence of the Nanoscale Composite Morphology of Fe3O4 Nanoparticle-Infused Lysozyme Amyloid Fibrils on Timing of Infusion: A Combined SAXS and AFM Study
Molecules 26(16):4864 (2021)
Schroer M, Hu P, Tomasovicova N, Batkova M, Zakutanska K, Wu P, Kopcansky P
|
RgGuinier |
23.6 |
nm |
Dmax |
90.0 |
nm |
|
|
|
|
|
Sample: |
Lysozyme amyloid fibril, 1 kDa Gallus gallus protein
Fe3O4 nanoparticles; nominal diameter 20 nm (hydrodynamic diameter) monomer, 1 kDa
|
Buffer: |
0.2 M glycine-HCl, 80 mM NaCl, pH: 2.2 |
Experiment: |
SAXS
data collected at EMBL P12, PETRA III on 2018 Sep 2
|
Dependence of the Nanoscale Composite Morphology of Fe3O4 Nanoparticle-Infused Lysozyme Amyloid Fibrils on Timing of Infusion: A Combined SAXS and AFM Study
Molecules 26(16):4864 (2021)
Schroer M, Hu P, Tomasovicova N, Batkova M, Zakutanska K, Wu P, Kopcansky P
|
RgGuinier |
31.0 |
nm |
Dmax |
75.0 |
nm |
|
|
|
|
|
Sample: |
L-lactate dehydrogenase tetramer, 141 kDa Plasmodium falciparum protein
|
Buffer: |
100 mM Na-phosphate buffer, 400 mM NaCl, pH: 7.4 |
Experiment: |
SAXS
data collected at Xenocs Xeuss 2.0 with MetalJet, Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University on 2019 Jul 3
|
A fragment-based approach identifies an allosteric pocket that impacts malate dehydrogenase activity
Communications Biology 4(1) (2021)
Reyes Romero A, Lunev S, Popowicz G, Calderone V, Gentili M, Sattler M, Plewka J, Taube M, Kozak M, Holak T, Dömling A, Groves M
|
RgGuinier |
3.4 |
nm |
Dmax |
10.5 |
nm |
VolumePorod |
211 |
nm3 |
|
|
|
|
|
Sample: |
L-lactate dehydrogenase tetramer, 141 kDa Plasmodium falciparum protein
|
Buffer: |
100 mM Na-phosphate buffer, 400 mM NaCl, pH: 7.4 |
Experiment: |
SAXS
data collected at Xenocs Xeuss 2.0 with MetalJet, Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University on 2019 Jul 3
|
A fragment-based approach identifies an allosteric pocket that impacts malate dehydrogenase activity
Communications Biology 4(1) (2021)
Reyes Romero A, Lunev S, Popowicz G, Calderone V, Gentili M, Sattler M, Plewka J, Taube M, Kozak M, Holak T, Dömling A, Groves M
|
RgGuinier |
3.4 |
nm |
Dmax |
10.5 |
nm |
VolumePorod |
244 |
nm3 |
|
|
|
|
|
Sample: |
L-lactate dehydrogenase tetramer, 141 kDa Plasmodium falciparum protein
|
Buffer: |
100 mM Na-phosphate buffer, 400 mM NaCl, pH: 7.4 |
Experiment: |
SAXS
data collected at Xenocs Xeuss 2.0 with MetalJet, Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University on 2019 Jul 3
|
A fragment-based approach identifies an allosteric pocket that impacts malate dehydrogenase activity
Communications Biology 4(1) (2021)
Reyes Romero A, Lunev S, Popowicz G, Calderone V, Gentili M, Sattler M, Plewka J, Taube M, Kozak M, Holak T, Dömling A, Groves M
|
RgGuinier |
3.6 |
nm |
Dmax |
11.4 |
nm |
VolumePorod |
223 |
nm3 |
|
|
|
|
|
Sample: |
TetR/AcrR family transcriptional regulator dimer, 48 kDa Bradyrhizobium diazoefficiens protein
|
Buffer: |
20 mM Na2HPO4, 50 mM NaCl, 50 mM imidazole, pH: 7.5 |
Experiment: |
SAXS
data collected at EMBL P12, PETRA III on 2013 Sep 23
|
The Induction Mechanism of the Flavonoid-Responsive Regulator FrrA.
FEBS J (2021)
Werner N, Werten S, Hoppen J, Palm GJ, Göttfert M, Hinrichs W
|
RgGuinier |
3.4 |
nm |
Dmax |
9.0 |
nm |
VolumePorod |
93 |
nm3 |
|
|
|
|
|
Sample: |
TetR/AcrR family transcriptional regulator dimer, 48 kDa Bradyrhizobium diazoefficiens protein
5,7-dihydroxy-3-(4-hydroxyphenyl)chromen-4-one monomer, 0 kDa
|
Buffer: |
20 mM Na2HPO4, 50 mM NaCl, 50 mM imidazole, 0.08 mM genistein, pH: 7.5 |
Experiment: |
SAXS
data collected at EMBL P12, PETRA III on 2015 Oct 27
|
The Induction Mechanism of the Flavonoid-Responsive Regulator FrrA.
FEBS J (2021)
Werner N, Werten S, Hoppen J, Palm GJ, Göttfert M, Hinrichs W
|
RgGuinier |
3.4 |
nm |
Dmax |
8.7 |
nm |
VolumePorod |
96 |
nm3 |
|
|
|
|
|
Sample: |
TetR/AcrR family transcriptional regulator dimer, 48 kDa Bradyrhizobium diazoefficiens protein
5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one monomer, 0 kDa
|
Buffer: |
20 mM Na2HPO4, 50 mM NaCl, 50 mM imidazole, 1 mM naringenin, pH: 7.5 |
Experiment: |
SAXS
data collected at EMBL P12, PETRA III on 2013 Sep 23
|
The Induction Mechanism of the Flavonoid-Responsive Regulator FrrA.
FEBS J (2021)
Werner N, Werten S, Hoppen J, Palm GJ, Göttfert M, Hinrichs W
|
RgGuinier |
3.2 |
nm |
Dmax |
8.6 |
nm |
VolumePorod |
91 |
nm3 |
|
|