Browse by MODEL: Hybrid

SASDUW8 – HIV-1 ¹H-DIS-C:²H(42%)-DIS-Gk RNA heterocomplex (DIS-Gk contrast matched in 90% v/v D₂O - SANS data)

HIV-1 dimerization initiation site with a CCCCCC apical loopHIV-1 DIS with a GGGGGG apical loop, UCU bulge, and 16 bp helical extension experimental SAS data
RNAMASONRY model
Sample: HIV-1 dimerization initiation site with a CCCCCC apical loop monomer, 9 kDa RNA
HIV-1 DIS with a GGGGGG apical loop, UCU bulge, and 16 bp helical extension monomer, 21 kDa RNA
Buffer: 50 mM potassium phosphate buffer, 1 mM MgCl2, 50 mM NaCl, pH: 7.5
Experiment: SANS data collected at CG-3, High Flux Isotope Reactor on 2023 Sep 15
Selective deuteration of an RNA:RNA complex for structural analysis using small-angle scattering. Structure (2025)
Munsayac A, Leite WC, Hopkins JB, Hall I, O'Neill HM, Keane SC
RgGuinier 1.4 nm
Dmax 4.6 nm

SASDUX8 – HIV-1 ²H(42%)-DIS-C:¹H-DIS-Gk RNA heterocomplex (DIS-C contrast matched in 90% v/v D₂O - SANS data)

HIV-1 dimerization initiation site with a CCCCCC apical loopHIV-1 DIS with a GGGGGG apical loop, UCU bulge, and 16 bp helical extension experimental SAS data
RNAMASONRY model
Sample: HIV-1 dimerization initiation site with a CCCCCC apical loop monomer, 9 kDa RNA
HIV-1 DIS with a GGGGGG apical loop, UCU bulge, and 16 bp helical extension monomer, 21 kDa RNA
Buffer: 50 mM potassium phosphate buffer, 1 mM MgCl2, 50 mM NaCl, pH: 7.5
Experiment: SANS data collected at CG-3, High Flux Isotope Reactor on 2023 Sep 15
Selective deuteration of an RNA:RNA complex for structural analysis using small-angle scattering. Structure (2025)
Munsayac A, Leite WC, Hopkins JB, Hall I, O'Neill HM, Keane SC
RgGuinier 2.9 nm
Dmax 9.7 nm

SASDTU8 – Complement C3* at 1.25 mg/mL (pH 6.0, 200 mM NaCl)

Complement C3 (Δ668-671) experimental SAS data
CORAL model
Sample: Complement C3 (Δ668-671) monomer, 187 kDa Homo sapiens protein
Buffer: 20 mM MES pH 6.0, 200 mM NaCl, pH: 6
Experiment: SAXS data collected at EMBL P12, PETRA III on 2022 Nov 7
Cryo-EM analysis of complement C3 reveals a reversible major opening of the macroglobulin ring. Nat Struct Mol Biol (2025)
Gadeberg TAF, Jørgensen MH, Olesen HG, Lorentzen J, Harwood SL, Almeida AV, Fruergaard MU, Jensen RK, Kanis P, Pedersen H, Tranchant E, Petersen SV, Thøgersen IB, Kragelund BB, Lyons JA, Enghild JJ, Andersen GR
RgGuinier 5.4 nm
Dmax 21.8 nm
VolumePorod 357 nm3

SASDVW5 – alpha-amylase AMY3

Alpha-amylase 3, chloroplastic experimental SAS data
BILBOMD model
Sample: Alpha-amylase 3, chloroplastic dimer, 187 kDa Arabidopsis thaliana protein
Buffer: 20 mM HEPES, 100 mM NaCl, 0.2 mM TCEP, pH: 7
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2023 May 16
The Pseudoenzyme β‐Amylase9 From Arabidopsis Activates α‐Amylase3: A Possible Mechanism to Promote Stress‐Induced Starch Degradation Proteins: Structure, Function, and Bioinformatics (2025)
Berndsen C, Storm A, Sardelli A, Hossain S, Clermont K, McFather L, Connor M, Monroe J
RgGuinier 5.1 nm
Dmax 21.5 nm
VolumePorod 444 nm3

SASDVX5 – pseudoamylase BAM9

Inactive beta-amylase 9 experimental SAS data
ALPHAFOLD model
Sample: Inactive beta-amylase 9 monomer, 50 kDa Arabidopsis thaliana protein
Buffer: 20 mM HEPES, 100 mM NaCl, 0.2 mM TCEP, pH: 7
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2023 May 16
The Pseudoenzyme β‐Amylase9 From Arabidopsis Activates α‐Amylase3: A Possible Mechanism to Promote Stress‐Induced Starch Degradation Proteins: Structure, Function, and Bioinformatics (2025)
Berndsen C, Storm A, Sardelli A, Hossain S, Clermont K, McFather L, Connor M, Monroe J
RgGuinier 2.4 nm
Dmax 8.7 nm
VolumePorod 87 nm3

SASDVY5 – pseudoamylase BAM9 bound to alpha-amylase AMY3

Inactive beta-amylase 9Alpha-amylase 3, chloroplastic experimental SAS data
BILBOMD model
Sample: Inactive beta-amylase 9 monomer, 50 kDa Arabidopsis thaliana protein
Alpha-amylase 3, chloroplastic monomer, 94 kDa Arabidopsis thaliana protein
Buffer: 20 mM HEPES, 100 mM NaCl, 0.2 mM TCEP, pH: 7
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2023 May 16
The Pseudoenzyme β‐Amylase9 From Arabidopsis Activates α‐Amylase3: A Possible Mechanism to Promote Stress‐Induced Starch Degradation Proteins: Structure, Function, and Bioinformatics (2025)
Berndsen C, Storm A, Sardelli A, Hossain S, Clermont K, McFather L, Connor M, Monroe J
RgGuinier 5.0 nm
Dmax 25.5 nm
VolumePorod 380 nm3

SASDU85 – Wild-type phosphoserine phosphatase RsbU dimer

Phosphoserine phosphatase RsbU experimental SAS data
MULTIFOXS model
Sample: Phosphoserine phosphatase RsbU dimer, 77 kDa Bacillus subtilis (strain … protein
Buffer: 20 mM HEPES, 100 mM NaCl, 5 mM DTT, pH: 7.5
Experiment: SAXS data collected at BioCAT 18ID, Advanced Photon Source (APS), Argonne National Laboratory on 2023 Feb 24
A general mechanism for initiating the bacterial general stress response. Elife 13 (2025)
Baral R, Ho K, Kumar RP, Hopkins JB, Watkins MB, LaRussa S, Caban-Penix S, Calderone LA, Bradshaw N
RgGuinier 3.9 nm
Dmax 14.3 nm
VolumePorod 117 nm3

SASDUU5 – Human Double-stranded RNA-binding protein Staufen homolog 1 with truncated RNA-binding domain 2 bound to 3'UTR fragment of ADP-ribosylation factor 1

Double-stranded RNA-binding protein Staufen homolog 1 (Δ1-177)3'UTR fragment of ADP-ribosylation factor 1 experimental SAS data
CORAL model
Sample: Double-stranded RNA-binding protein Staufen homolog 1 (Δ1-177) dimer, 89 kDa Homo sapiens protein
3'UTR fragment of ADP-ribosylation factor 1 monomer, 14 kDa Homo sapiens RNA
Buffer: 50 mM TRIS, 300 mM NaCl, 3.8 mM β-mercaptoethanol, pH: 7
Experiment: SAXS data collected at Rigaku BioSAXS-1000, CEITEC on 2020 May 4
A Simple Protocol for Visualization of RNA-Protein Complexes by Atomic Force Microscopy. Curr Protoc 5(1):e70084 (2025)
Tripepi A, Shakoor H, Klapetek P
RgGuinier 4.9 nm
Dmax 13.4 nm
VolumePorod 129 nm3

SASDUV5 – Human Double-stranded RNA-binding protein Staufen homolog 1 with truncated RNA-binding domain 2 and truncated Staufen-swapping (ΔSSM) motif bound to 3'UTR fragment of ADP-ribosylation factor 1

3'UTR fragment of ADP-ribosylation factor 1Double-stranded RNA-binding protein Staufen homolog 1 with truncated RNA-binding domain 2 and truncated Staufen-swapping (ΔSSM) experimental SAS data
CORAL model
Sample: 3'UTR fragment of ADP-ribosylation factor 1 monomer, 14 kDa Homo sapiens RNA
Double-stranded RNA-binding protein Staufen homolog 1 with truncated RNA-binding domain 2 and truncated Staufen-swapping (ΔSSM) dimer, 81 kDa Homo sapiens protein
Buffer: 50 mM TRIS, 300 mM NaCl, 3.8 mM β-mercaptoethanol, pH: 7
Experiment: SAXS data collected at Rigaku BioSAXS-2000, CEITEC on 2024 Jan 12
A Simple Protocol for Visualization of RNA-Protein Complexes by Atomic Force Microscopy. Curr Protoc 5(1):e70084 (2025)
Tripepi A, Shakoor H, Klapetek P
RgGuinier 5.5 nm
Dmax 16.1 nm
VolumePorod 139 nm3

SASDWK2 – Mannitou IgM Fab Monomer

IgM Mannitou Fab Heavy ChainIgM Mannitou Fab Light Chain experimental SAS data
ALPHAFOLD model
Sample: IgM Mannitou Fab Heavy Chain monomer, 26 kDa Mus musculus protein
IgM Mannitou Fab Light Chain monomer, 24 kDa Mus musculus protein
Buffer: 20 mM HEPES, 300 mM NaCl, pH: 7.5
Experiment: SAXS data collected at SWING, SOLEIL on 2024 Jun 5
Small-angle X-ray scattering of engineered antigen-binding fragments: the case of glycosylated Fab from the Mannitou IgM antibody. Acta Crystallogr F Struct Biol Commun (2025)
Semwal S, Karamolegkou M, Flament S, Raouraoua N, Verstraete K, Thureau A, Wien F, Bray F, Savvides SN, Bouckaert J
RgGuinier 2.8 nm
Dmax 12.5 nm
VolumePorod 74 nm3