MACROMOLECULE TYPE: heterocomplex

SASDBK4 – The 1:1:3:1 crRNA:Cas6f:Cas7fv:Cas5fv CRISPR/Cas Type I-F short Cascade complex

short-crRNA: CRISPR/Cas Type I-F Cascade componentCas6f: CRISPR/Cas Type I-F Cascade component (CRISPR-associated protein, Csy4 family)Trimeric Cas7fv: CRISPR/Cas Type I-F Cascade component (Uncharacterized protein, Sputcn32_1821)Cas5fv: CRISPR/Cas Type I-F Cascade component (Uncharacterized protein, Sputcn32_1822) experimental SAS data
DAMMIF model
Sample: Short-crRNA: CRISPR/Cas Type I-F Cascade component monomer, 14 kDa Shewanella putrefaciens RNA
Cas6f: CRISPR/Cas Type I-F Cascade component (CRISPR-associated protein, Csy4 family) monomer, 21 kDa Shewanella putrefaciens protein
Trimeric Cas7fv: CRISPR/Cas Type I-F Cascade component (Uncharacterized protein, Sputcn32_1821) trimer, 112 kDa Shewanella putrefaciens protein
Cas5fv: CRISPR/Cas Type I-F Cascade component (Uncharacterized protein, Sputcn32_1822) monomer, 38 kDa Shewanella putrefaciens protein
Buffer: 50 mM HEPES 150 mM NaCl 1mM DTT 1mM EDTA, pH: 7
Experiment: SAXS data collected at BM29, ESRF on 2015 Jun 27
Modulating the Cascade architecture of a minimal Type I-F CRISPR-Cas system. Nucleic Acids Res 44(12):5872-82 (2016)
Gleditzsch D, Müller-Esparza H, Pausch P, Sharma K, Dwarakanath S, Urlaub H, Bange G, Randau L
RgGuinier 4.1 nm
Dmax 14.2 nm

SASDBL4 – The 1:1:6:1 crRNA:Cas6f:Cas7fv:Cas5fv CRISPR/Cas Type I-F wild-type Cascade complex

Cas6f: CRISPR/Cas Type I-F Cascade component (CRISPR-associated protein, Csy4 family)Cas5fv: CRISPR/Cas Type I-F Cascade component (Uncharacterized protein, Sputcn32_1822)Hexameric Cas7fv: CRISPR/Cas Type I-F Cascade component (Uncharacterized protein, Sputcn32_1821)wildtype-crRNA: CRISPR/Cas Type I-F Cascade component experimental SAS data
DAMMIF model
Sample: Cas6f: CRISPR/Cas Type I-F Cascade component (CRISPR-associated protein, Csy4 family) monomer, 21 kDa Shewanella putrefaciens protein
Cas5fv: CRISPR/Cas Type I-F Cascade component (Uncharacterized protein, Sputcn32_1822) monomer, 38 kDa Shewanella putrefaciens protein
Hexameric Cas7fv: CRISPR/Cas Type I-F Cascade component (Uncharacterized protein, Sputcn32_1821) hexamer, 223 kDa Shewanella putrefaciens protein
Wildtype-crRNA: CRISPR/Cas Type I-F Cascade component monomer, 19 kDa RNA
Buffer: 50 mM HEPES 150 mM NaCl 1mM DTT 1mM EDTA, pH: 7
Experiment: SAXS data collected at BM29, ESRF on 2015 Jun 27
Modulating the Cascade architecture of a minimal Type I-F CRISPR-Cas system. Nucleic Acids Res 44(12):5872-82 (2016)
Gleditzsch D, Müller-Esparza H, Pausch P, Sharma K, Dwarakanath S, Urlaub H, Bange G, Randau L
RgGuinier 5.4 nm
Dmax 18.4 nm

SASDBM4 – The 1:1:9:1 crRNA:Cas6f:Cas7fv:Cas5fv CRISPR/Cas Type I-F long Cascade complex

Cas6f: CRISPR/Cas Type I-F Cascade component (CRISPR-associated protein, Csy4 family)Cas5fv: CRISPR/Cas Type I-F Cascade component (Uncharacterized protein, Sputcn32_1822)Nonameric Cas7fv: CRISPR/Cas Type I-F Cascade component (Uncharacterized protein, Sputcn32_1821)long-crRNA: CRISPR/Cas Type I-F Cascade component experimental SAS data
DAMMIF model
Sample: Cas6f: CRISPR/Cas Type I-F Cascade component (CRISPR-associated protein, Csy4 family) monomer, 21 kDa Shewanella putrefaciens protein
Cas5fv: CRISPR/Cas Type I-F Cascade component (Uncharacterized protein, Sputcn32_1822) monomer, 38 kDa Shewanella putrefaciens protein
Nonameric Cas7fv: CRISPR/Cas Type I-F Cascade component (Uncharacterized protein, Sputcn32_1821) nonamer, 335 kDa Shewanella putrefaciens protein
Long-crRNA: CRISPR/Cas Type I-F Cascade component monomer, 25 kDa RNA
Buffer: 50 mM HEPES 150 mM NaCl 1mM DTT 1mM EDTA, pH: 7
Experiment: SAXS data collected at BM29, ESRF on 2016 Jan 30
Modulating the Cascade architecture of a minimal Type I-F CRISPR-Cas system. Nucleic Acids Res 44(12):5872-82 (2016)
Gleditzsch D, Müller-Esparza H, Pausch P, Sharma K, Dwarakanath S, Urlaub H, Bange G, Randau L
RgGuinier 6.5 nm
Dmax 21.6 nm

SASDMV4 – Full-length Retinoic acid receptor RXR-alpha in complex with Ramp2 DNA

Retinoic acid receptor RXR-alphaRamp2 DNA experimental SAS data
EOM/RANCH model
Sample: Retinoic acid receptor RXR-alpha dimer, 102 kDa Homo sapiens protein
Ramp2 DNA monomer, 11 kDa DNA
Buffer: 20 mM Tris, 50 mM NaCl, 50 mM KCl, 5% glycerol, 2 mM Chaps, and 5 mM DTT, pH: 7.5
Experiment: SAXS data collected at EMBL X33, DORIS III, DESY on 2010 May 7
Solution Behavior of the Intrinsically Disordered N-Terminal Domain of Retinoid X Receptor α in the Context of the Full-Length Protein Biochemistry 55(12):1741-1748 (2016)
Belorusova A, Osz J, Petoukhov M, Peluso-Iltis C, Kieffer B, Svergun D, Rochel N
RgGuinier 4.4 nm
Dmax 13.9 nm
VolumePorod 161 nm3

SASDMW4 – Retinoic acid receptor RXR-alpha N-terminal and DNA binding domains (DBD) in complex with Ramp2 DNA

Ramp2 DNARetinoic acid receptor RXR-alpha experimental SAS data
EOM/RANCH model
Sample: Ramp2 DNA monomer, 11 kDa DNA
Retinoic acid receptor RXR-alpha dimer, 44 kDa Homo sapiens protein
Buffer: 20 mM Tris, 50 mM NaCl, 50 mM KCl, 5% glycerol, 2 mM Chaps, and 5 mM DTT, pH: 7.5
Experiment: SAXS data collected at EMBL X33, DORIS III, DESY on 2009 Jul 17
Solution Behavior of the Intrinsically Disordered N-Terminal Domain of Retinoid X Receptor α in the Context of the Full-Length Protein Biochemistry 55(12):1741-1748 (2016)
Belorusova A, Osz J, Petoukhov M, Peluso-Iltis C, Kieffer B, Svergun D, Rochel N
RgGuinier 4.3 nm
Dmax 14.3 nm
VolumePorod 89 nm3

SASDMX4 – Retinoic acid receptor RXR-alpha DNA binding (DBD) and ligand binding (LBD) domains in complex with Ramp2 DNA

Ramp2 DNARetinoic acid receptor RXR-alpha experimental SAS data
CORAL model
Sample: Ramp2 DNA monomer, 11 kDa DNA
Retinoic acid receptor RXR-alpha dimer, 74 kDa Homo sapiens protein
Buffer: 20 mM Tris, 50 mM NaCl, 50 mM KCl, 5% glycerol, 2 mM Chaps, and 5 mM DTT, pH: 7.5
Experiment: SAXS data collected at EMBL X33, DORIS III, DESY on 2010 Oct 7
Solution Behavior of the Intrinsically Disordered N-Terminal Domain of Retinoid X Receptor α in the Context of the Full-Length Protein Biochemistry 55(12):1741-1748 (2016)
Belorusova A, Osz J, Petoukhov M, Peluso-Iltis C, Kieffer B, Svergun D, Rochel N
RgGuinier 3.6 nm
Dmax 12.2 nm

SASDMY4 – Retinoic acid receptor RXR-alpha DNA binding domain (DBD) in complex with Ramp2

Ramp2 DNARetinoic acid receptor RXR-alpha experimental SAS data
CUSTOM IN-HOUSE model
Sample: Ramp2 DNA monomer, 11 kDa DNA
Retinoic acid receptor RXR-alpha dimer, 20 kDa Homo sapiens protein
Buffer: 20 mM Tris, 50 mM NaCl, 50 mM KCl, 5% glycerol, 2 mM Chaps, and 5 mM DTT, pH: 7.5
Experiment: SAXS data collected at EMBL X33, DORIS III, DESY on 2010 Oct 7
Solution Behavior of the Intrinsically Disordered N-Terminal Domain of Retinoid X Receptor α in the Context of the Full-Length Protein Biochemistry 55(12):1741-1748 (2016)
Belorusova A, Osz J, Petoukhov M, Peluso-Iltis C, Kieffer B, Svergun D, Rochel N
RgGuinier 1.9 nm
Dmax 5.8 nm

SASDAR8 – mLANA 124-316 mLBS1-2 8:1 complex

MHV-68 TR DNALatency-associated nuclear antigen experimental SAS data
CRYSOL model
Sample: MHV-68 TR DNA monomer, 30 kDa unidentified herpesvirus DNA
Latency-associated nuclear antigen octamer, 269 kDa Murid herpesvirus 4 protein
Buffer: 25 mM Na/K Phosphate, pH: 7.5
Experiment: SAXS data collected at EMBL P12, PETRA III on 2013 Apr 27
KSHV but not MHV-68 LANA induces a strong bend upon binding to terminal repeat viral DNA. Nucleic Acids Res 43(20):10039-54 (2015)
Ponnusamy R, Petoukhov MV, Correia B, Custodio TF, Juillard F, Tan M, Pires de Miranda M, Carrondo MA, Simas JP, Kaye KM, Svergun DI, McVey CE
RgGuinier 5.8 nm
Dmax 20.0 nm
VolumePorod 475 nm3

SASDAS8 – kLANA 1008-1150 -- kLBS1-2 complex 8:2 (partially dissociated)

kLBS1-2 DNAORF73 tetramerORF73 octamerkLBS1-2 DNA two monomers experimental SAS data
NONE model
Sample: KLBS1-2 DNA monomer, 24 kDa unidentified herpesvirus DNA
ORF73 tetramer tetramer, 63 kDa Human herpesvirus 8 protein
ORF73 octamer octamer, 126 kDa Human herpesvirus 8 protein
KLBS1-2 DNA two monomers dimer, 48 kDa unidentified herpesvirus RNA
Buffer: 25 mM Na/K Phosphate, pH: 7.5
Experiment: SAXS data collected at EMBL P12, PETRA III on 2013 Apr 27
KSHV but not MHV-68 LANA induces a strong bend upon binding to terminal repeat viral DNA. Nucleic Acids Res 43(20):10039-54 (2015)
Ponnusamy R, Petoukhov MV, Correia B, Custodio TF, Juillard F, Tan M, Pires de Miranda M, Carrondo MA, Simas JP, Kaye KM, Svergun DI, McVey CE
RgGuinier 4.8 nm
Dmax 16.0 nm
VolumePorod 250 nm3

SASDAB7 – Complex ComE-comcde

comcdeResponse regulator experimental SAS data
OTHER model
Sample: Comcde, 24 kDa Streptococcus pneumoniae DNA
Response regulator dimer, 61 kDa Streptococcus pneumoniae protein
Buffer: 50 mM MES 500 mM NaCl 5% (v/v) Glycerol 5 mM β-mercaptoethanol, pH: 6.2
Experiment: SAXS data collected at SWING, SOLEIL on 2011 Feb 11
Modeling the ComD/ComE/comcde interaction network using small angle X-ray scattering. FEBS J 282(8):1538-53 (2015)
Sanchez D, Boudes M, van Tilbeurgh H, Durand D, Quevillon-Cheruel S
RgGuinier 3.4 nm
Dmax 10.7 nm
VolumePorod 122 nm3