Browse by ORGANISM: Homo sapiens (Human)

SASDHF8 – Histatin 5 (Histatin 3; His3-(20-43)-peptide) at 4.89 mg/ml in 20 mM Tris 150 mM NaCl pH 7.0, 298 K

Histatin-3, His3-(20-43)-peptide experimental SAS data
Histatin 5 (Histatin 3; His3-(20-43)-peptide) at 4.89 mg/ml in 20 mM Tris 150 mM NaCl pH 7.0, 298 K Rg histogram
Sample: Histatin-3, His3-(20-43)-peptide monomer, 3 kDa Homo sapiens protein
Buffer: 20 mM Tris, 150 mM NaCl,, pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III on 2020 Mar 13
Comment on the Optimal Parameters to Derive Intrinsically Disordered Protein Conformational Ensembles from Small-Angle X-ray Scattering Data Using the Ensemble Optimization Method Journal of Chemical Theory and Computation (2021)
Sagar A, Jeffries C, Petoukhov M, Svergun D, Bernadó P
RgGuinier 1.4 nm
Dmax 6.0 nm
VolumePorod 3 nm3

SASDHG8 – Histatin 5 (Histatin 3; His3-(20-43)-peptide) at 2.51 mg/ml in 20 mM Tris 150 mM NaCl pH 7.0, 298 K

Histatin-3, His3-(20-43)-peptide experimental SAS data
Histatin-3, His3-(20-43)-peptide Kratky plot
Sample: Histatin-3, His3-(20-43)-peptide monomer, 3 kDa Homo sapiens protein
Buffer: 20 mM Tris 150 mM NaCl, pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III on 2020 Mar 13
Comment on the Optimal Parameters to Derive Intrinsically Disordered Protein Conformational Ensembles from Small-Angle X-ray Scattering Data Using the Ensemble Optimization Method Journal of Chemical Theory and Computation (2021)
Sagar A, Jeffries C, Petoukhov M, Svergun D, Bernadó P
RgGuinier 1.5 nm
Dmax 6.4 nm
VolumePorod 3 nm3

SASDHH8 – Histatin 5 (Histatin 3; His3-(20-43)-peptide) at 1.26 mg/ml in 20 mM Tris 150 mM NaCl pH 7.0, 298 K

Histatin-3, His3-(20-43)-peptide experimental SAS data
Histatin-3, His3-(20-43)-peptide Kratky plot
Sample: Histatin-3, His3-(20-43)-peptide monomer, 3 kDa Homo sapiens protein
Buffer: 20 mM Tris 150 mM NaCl, pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III on 2020 Mar 13
Comment on the Optimal Parameters to Derive Intrinsically Disordered Protein Conformational Ensembles from Small-Angle X-ray Scattering Data Using the Ensemble Optimization Method Journal of Chemical Theory and Computation (2021)
Sagar A, Jeffries C, Petoukhov M, Svergun D, Bernadó P
RgGuinier 1.5 nm
Dmax 6.0 nm
VolumePorod 3 nm3

SASDKL4 – High temperature requirement of human mitochondrial serine protease HTRA2 (S306A mutant; 10 mg/ml)

Serine protease HTRA2, mitochondrial experimental SAS data
SASREF MX model
Sample: Serine protease HTRA2, mitochondrial hexamer, 210 kDa Homo sapiens protein
Buffer: 20 mM HEPES-NaOH (pH 7.4), 120 mM NaCl, 1 mM EDTA, and 2% glycerol, pH: 7.4
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2020 Jul 1
Oligomeric assembly regulating mitochondrial HtrA2 function as examined by methyl-TROSY NMR Proceedings of the National Academy of Sciences 118(11):e2025022118 (2021)
Toyama Y, Harkness R, Lee T, Maynes J, Kay L
RgGuinier 4.2 nm
Dmax 16.0 nm
VolumePorod 250 nm3

SASDKM4 – High temperature requirement of human mitochondrial serine protease HTRA2 (S306A mutant; 5 mg/ml)

Serine protease HTRA2, mitochondrial experimental SAS data
SASREF MX model
Sample: Serine protease HTRA2, mitochondrial hexamer, 210 kDa Homo sapiens protein
Buffer: 20 mM HEPES-NaOH (pH 7.4), 120 mM NaCl, 1 mM EDTA, and 2% glycerol, pH: 7.4
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2020 Jul 1
Oligomeric assembly regulating mitochondrial HtrA2 function as examined by methyl-TROSY NMR Proceedings of the National Academy of Sciences 118(11):e2025022118 (2021)
Toyama Y, Harkness R, Lee T, Maynes J, Kay L
RgGuinier 3.8 nm
Dmax 15.0 nm
VolumePorod 213 nm3

SASDKN4 – High temperature requirement of human mitochondrial serine protease HTRA2 (S306A mutant; 2 mg/ml)

Serine protease HTRA2, mitochondrial experimental SAS data
SASREF MX model
Sample: Serine protease HTRA2, mitochondrial hexamer, 210 kDa Homo sapiens protein
Buffer: 20 mM HEPES-NaOH (pH 7.4), 120 mM NaCl, 1 mM EDTA, and 2% glycerol, pH: 7.4
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2020 Jul 1
Oligomeric assembly regulating mitochondrial HtrA2 function as examined by methyl-TROSY NMR Proceedings of the National Academy of Sciences 118(11):e2025022118 (2021)
Toyama Y, Harkness R, Lee T, Maynes J, Kay L
RgGuinier 3.6 nm
Dmax 12.8 nm
VolumePorod 203 nm3

SASDKP4 – High temperature requirement of human mitochondrial serine protease HTRA2 (S306A mutant; 1 mg/ml)

Serine protease HTRA2, mitochondrial experimental SAS data
SASREF MX model
Sample: Serine protease HTRA2, mitochondrial hexamer, 210 kDa Homo sapiens protein
Buffer: 20 mM HEPES-NaOH (pH 7.4), 120 mM NaCl, 1 mM EDTA, and 2% glycerol, pH: 7.4
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2020 Jul 1
Oligomeric assembly regulating mitochondrial HtrA2 function as examined by methyl-TROSY NMR Proceedings of the National Academy of Sciences 118(11):e2025022118 (2021)
Toyama Y, Harkness R, Lee T, Maynes J, Kay L
RgGuinier 3.4 nm
Dmax 12.0 nm
VolumePorod 168 nm3

SASDJ64 – Calcium bound Calmodulin

Calmodulin-1 experimental SAS data
DENSS model
Sample: Calmodulin-1 monomer, 17 kDa Homo sapiens protein
Buffer: 20 mM HEPES, 150 mM NaCl, 4 mM CaCl₂, pH: 7.4
Experiment: SAXS data collected at SWING, SOLEIL on 2016 Sep 24
A High‐Affinity Calmodulin‐Binding Site in the CyaA Toxin Translocation Domain is Essential for Invasion of Eukaryotic Cells Advanced Science :2003630 (2021)
Voegele A, Sadi M, O'Brien D, Gehan P, Raoux‐Barbot D, Davi M, Hoos S, Brûlé S, Raynal B, Weber P, Mechaly A, Haouz A, Rodriguez N, Vachette P, Durand D, Brier S, Ladant D, Chenal A
RgGuinier 2.2 nm
Dmax 7.3 nm
VolumePorod 27 nm3

SASDJ74 – P454 peptide from B.pertussis CyaA toxin complexed with calmodulin

Calmodulin-1Bifunctional hemolysin/adenylate cyclase experimental SAS data
DENSS model
Sample: Calmodulin-1 monomer, 17 kDa Homo sapiens protein
Bifunctional hemolysin/adenylate cyclase monomer, 3 kDa Bordetella pertussis protein
Buffer: 20 mM HEPES, 150 mM NaCl, 4 mM CaCl₂, pH: 7.4
Experiment: SAXS data collected at SWING, SOLEIL on 2016 Sep 24
A High‐Affinity Calmodulin‐Binding Site in the CyaA Toxin Translocation Domain is Essential for Invasion of Eukaryotic Cells Advanced Science :2003630 (2021)
Voegele A, Sadi M, O'Brien D, Gehan P, Raoux‐Barbot D, Davi M, Hoos S, Brûlé S, Raynal B, Weber P, Mechaly A, Haouz A, Rodriguez N, Vachette P, Durand D, Brier S, Ladant D, Chenal A
RgGuinier 2.0 nm
Dmax 7.0 nm
VolumePorod 28 nm3

SASDKB8 – Immunoglobulin G1 (IgG1) Glycosylated

Immunoglobulin G subclass 1 experimental SAS data
CUSTOM IN-HOUSE model
Sample: Immunoglobulin G subclass 1, 148 kDa Homo sapiens protein
Buffer: 20 mM L-histidine, 138 mM NaCl, and 2.6 mM KCl buffer, pH: 6
Experiment: SAXS data collected at B21, Diamond Light Source on 2017 Oct 20
Solution structure of deglycosylated human IgG1 shows the role of CH2 glycans in its conformation Biophysical Journal (2021)
Spiteri V, Doutch J, Rambo R, Gor J, Dalby P, Perkins S
RgGuinier 5.1 nm
Dmax 17.5 nm
VolumePorod 269 nm3