Browse by ORGANISM: other species

SASDE99 – Calredoxin with EGTA

Calredoxin, Redox protein from Chlamydomonas reinhardtii experimental SAS data
Calredoxin, Redox protein from Chlamydomonas reinhardtii Kratky plot
Sample: Calredoxin, Redox protein from Chlamydomonas reinhardtii monomer, 40 kDa Chlamydomonas reinhardtii protein
Buffer: 20 mM Tris, 150 mM NaCl, 1 mM DTT, 5 mM EGTA, pH: 8
Experiment: SAXS data collected at Rigaku BioSAXS-1000, Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University on 2015 Nov 17
Calcium sensing via EF-hand 4 enables thioredoxin activity in the sensor-responder protein calredoxin in the green alga Chlamydomonas reinhardtii. J Biol Chem (2019)
Charoenwattanasatien R, Zinzius K, Scholz M, Wicke S, Tanaka H, Brandenburg JS, Marchetti GM, Ikegami T, Matsumoto T, Oda T, Sato M, Hippler M, Kurisu G
RgGuinier 2.5 nm
Dmax 8.7 nm
VolumePorod 60 nm3

SASDEA9 – Calredoxin with Calcium

Calredoxin, Redox protein from Chlamydomonas reinhardtii experimental SAS data
Calredoxin, Redox protein from Chlamydomonas reinhardtii Kratky plot
Sample: Calredoxin, Redox protein from Chlamydomonas reinhardtii monomer, 40 kDa Chlamydomonas reinhardtii protein
Buffer: 20 mM Tris, 150 mM NaCl, 1 mM DTT, 5 mM CaCl2, pH: 8
Experiment: SAXS data collected at Rigaku BioSAXS-1000, Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University on 2015 Nov 17
Calcium sensing via EF-hand 4 enables thioredoxin activity in the sensor-responder protein calredoxin in the green alga Chlamydomonas reinhardtii. J Biol Chem (2019)
Charoenwattanasatien R, Zinzius K, Scholz M, Wicke S, Tanaka H, Brandenburg JS, Marchetti GM, Ikegami T, Matsumoto T, Oda T, Sato M, Hippler M, Kurisu G
RgGuinier 3.1 nm
Dmax 11.6 nm
VolumePorod 68 nm3

SASDFW4 – Conformation of R8-15 human dystrophin fragment

Human dystrophin central domain R8-15 fragment experimental SAS data
CUSTOM IN-HOUSE model
Sample: Human dystrophin central domain R8-15 fragment monomer, 100 kDa protein
Buffer: NaP 10 mM, NaCl 500 mM, EDTA 1 mM, Glycerol 2%, pH: 7.5
Experiment: SAXS data collected at SWING, SOLEIL on 2015 Sep 23
How the central domain of dystrophin acts to bridge F-actin to sarcolemmal lipids. J Struct Biol :107411 (2019)
Mias-Lucquin D, Dos Santos Morais R, Chéron A, Lagarrigue M, Winder SJ, Chenuel T, Pérez J, Appavou MS, Martel A, Alviset G, Le Rumeur E, Combet S, Hubert JF, Delalande O
RgGuinier 10.1 nm
Dmax 36.0 nm

SASDFX4 – Conformation of R11-19 human dystrophin fragment

Human dystrophin central domain R11-19 fragment experimental SAS data
CUSTOM IN-HOUSE model
Sample: Human dystrophin central domain R11-19 fragment monomer, 117 kDa protein
Buffer: NaP 20 mM, NaCl 300 mM, EDTA 1 mM, Glycerol 2%, pH: 7.5
Experiment: SAXS data collected at SWING, SOLEIL on 2017 May 11
How the central domain of dystrophin acts to bridge F-actin to sarcolemmal lipids. J Struct Biol :107411 (2019)
Mias-Lucquin D, Dos Santos Morais R, Chéron A, Lagarrigue M, Winder SJ, Chenuel T, Pérez J, Appavou MS, Martel A, Alviset G, Le Rumeur E, Combet S, Hubert JF, Delalande O
RgGuinier 8.8 nm
Dmax 37.5 nm
VolumePorod 513 nm3

SASDG97 – Trypanosoma brucei Membrane Occupation and Recognition Nexus MORN1 repeats 2-15

Trypanosoma brucei Membrane Occupation and Recognition Nexus MORN repeats 2-15 experimental SAS data
DAMMIF model
Sample: Trypanosoma brucei Membrane Occupation and Recognition Nexus MORN repeats 2-15 dimer, 78 kDa Trypanosoma brucei protein
Buffer: 20 mM Tris-HCl, 100 mM NaCl, pH: 7.5
Experiment: SAXS data collected at BM29, ESRF on 2017 Jan 27
Structures of three MORN repeat proteins and a re-evaluation of the proposed lipid-binding properties of MORN repeats. PLoS One 15(12):e0242677 (2020)
Sajko S, Grishkovskaya I, Kostan J, Graewert M, Setiawan K, Trübestein L, Niedermüller K, Gehin C, Sponga A, Puchinger M, Gavin AC, Leonard TA, Svergun DI, Smith TK, Morriswood B, Djinovic-Carugo K
RgGuinier 6.5 nm
Dmax 26.0 nm
VolumePorod 187 nm3

SASDGA7 – Trypanosoma brucei Membrane Occupation and Recognition Nexus MORN1 repeats 7-15

Trypanosoma brucei Membrane Occupation and Recognition Nexus MORN (7-15) experimental SAS data
CUSTOM IN-HOUSE model
Sample: Trypanosoma brucei Membrane Occupation and Recognition Nexus MORN (7-15) dimer, 52 kDa Trypanosoma brucei protein
Buffer: 20 mM Tris-HCl, 200 mM NaCl, 2% (w/v) glycerol, 0.5 mM DTT, pH: 8.5
Experiment: SAXS data collected at EMBL P12, PETRA III on 2016 Jun 11
Structures of three MORN repeat proteins and a re-evaluation of the proposed lipid-binding properties of MORN repeats. PLoS One 15(12):e0242677 (2020)
Sajko S, Grishkovskaya I, Kostan J, Graewert M, Setiawan K, Trübestein L, Niedermüller K, Gehin C, Sponga A, Puchinger M, Gavin AC, Leonard TA, Svergun DI, Smith TK, Morriswood B, Djinovic-Carugo K
RgGuinier 4.1 nm
Dmax 15.5 nm
VolumePorod 56 nm3

SASDGB7 – Toxoplasma gondii Membrane Occupation and Recognition Nexus (MORN1) repeats 7-15

Toxoplasma gondii Membrane Occupation and Recognition Nexus (MORN1) repeats 7-15 experimental SAS data
DAMMIF model
Sample: Toxoplasma gondii Membrane Occupation and Recognition Nexus (MORN1) repeats 7-15 dimer, 49 kDa Toxoplasma gondii protein
Buffer: 20 mM Tris-HCl, 100 mM NaCl, pH: 7.5
Experiment: SAXS data collected at EMBL P12, PETRA III on 2016 Jun 10
Structures of three MORN repeat proteins and a re-evaluation of the proposed lipid-binding properties of MORN repeats. PLoS One 15(12):e0242677 (2020)
Sajko S, Grishkovskaya I, Kostan J, Graewert M, Setiawan K, Trübestein L, Niedermüller K, Gehin C, Sponga A, Puchinger M, Gavin AC, Leonard TA, Svergun DI, Smith TK, Morriswood B, Djinovic-Carugo K
RgGuinier 4.0 nm
Dmax 17.0 nm
VolumePorod 55 nm3

SASDGC7 – Plasmodium falciparum Membrane Occupation and Recognition Nexus (MORN1) repeats 7-15

MORN repeat-containing protein 1 experimental SAS data
DAMMIN model
Sample: MORN repeat-containing protein 1 dimer, 46 kDa Plasmodium falciparum protein
Buffer: 20 mM Tris-HCl, 100 mM NaCl, pH: 7.5
Experiment: SAXS data collected at EMBL P12, PETRA III on 2017 Dec 2
Structures of three MORN repeat proteins and a re-evaluation of the proposed lipid-binding properties of MORN repeats. PLoS One 15(12):e0242677 (2020)
Sajko S, Grishkovskaya I, Kostan J, Graewert M, Setiawan K, Trübestein L, Niedermüller K, Gehin C, Sponga A, Puchinger M, Gavin AC, Leonard TA, Svergun DI, Smith TK, Morriswood B, Djinovic-Carugo K
RgGuinier 3.8 nm
Dmax 16.0 nm
VolumePorod 52 nm3

SASDFL4 – C-type lectins CTL4/CTLMA2, 3.1 mg/ml

AGAP005335-PAAGAP005334-PA experimental SAS data
MULTIFOXS model
Sample: AGAP005335-PA monomer, 18 kDa Anopheles gambiae protein
AGAP005334-PA monomer, 18 kDa Anopheles gambiae protein
Buffer: 500 mM NaCl, 20 mM CHES, 0.5 mM CaCl2, 1% glycerol, pH: 9
Experiment: SAXS data collected at Rigaku BioSAXS-2000, Thomas Jefferson University on 2018 Aug 30
Solution structure, glycan specificity and of phenol oxidase inhibitory activity of Anopheles C-type lectins CTL4 and CTLMA2. Sci Rep 9(1):15191 (2019)
Bishnoi R, Sousa GL, Contet A, Day CJ, Hou CD, Profitt LA, Singla D, Jennings MP, Valentine AM, Povelones M, Baxter RHG
RgGuinier 2.5 nm
Dmax 8.0 nm
VolumePorod 58 nm3

SASDHG2 – 12 base-paired RNA double helix (RNA12) with 30 mM KCl - SWAXS

12 base-paired RNA double helix experimental SAS data
12 base-paired RNA double helix Kratky plot
Sample: 12 base-paired RNA double helix monomer, 8 kDa RNA
Buffer: 30 mM KCl, 20 mM KMOPS, 20 µM EDTA, pH: 7
Experiment: SAXS data collected at G1, Cornell High Energy Synchrotron Source (CHESS) on 2017 Apr 16
Salt Dependence of A-Form RNA Duplexes: Structures and Implications. J Phys Chem B 123(46):9773-9785 (2019)
Chen YL, Pollack L
RgGuinier 1.4 nm