Browse by ORGANISM: other species

SASDRS8 – Сhloroplast FOF1-ATP synthase from Spinacia oleracea at 150 mM NaCl

ATP synthase subunit alpha, chloroplasticATP synthase subunit beta, chloroplasticATP synthase gamma chain, chloroplasticATP synthase delta chain, chloroplasticATP synthase epsilon chain, chloroplasticATP synthase subunit a, chloroplasticATP synthase subunit b, chloroplasticATP synthase subunit b', chloroplasticATP synthase subunit c, chloroplastic4-trans-(4-trans-Propylcyclohexyl)-cyclohexyl α-maltoside experimental SAS data
OTHER [STATIC IMAGE] model
Sample: ATP synthase subunit alpha, chloroplastic trimer, 166 kDa Spinacia oleracea protein
ATP synthase subunit beta, chloroplastic trimer, 161 kDa Spinacia oleracea protein
ATP synthase gamma chain, chloroplastic monomer, 40 kDa Spinacia oleracea protein
ATP synthase delta chain, chloroplastic monomer, 28 kDa Spinacia oleracea protein
ATP synthase epsilon chain, chloroplastic monomer, 15 kDa Spinacia oleracea protein
ATP synthase subunit a, chloroplastic monomer, 27 kDa Spinacia oleracea protein
ATP synthase subunit b, chloroplastic monomer, 21 kDa Spinacia oleracea protein
ATP synthase subunit b', chloroplastic monomer, 24 kDa Spinacia oleracea protein
ATP synthase subunit c, chloroplastic 14-mer, 112 kDa Spinacia oleracea protein
4-trans-(4-trans-Propylcyclohexyl)-cyclohexyl α-maltoside 0, 283 kDa
Buffer: 150 mM NaCl, 30 mM HEPES, 2 mM MgCl2, 0.04% (w/v) tPCC-α-M, pH: 8
Experiment: SAXS data collected at Rigaku MicroMax 007-HF, Moscow Institute of Physics and Technology (MIPT) on 2020 Oct 3
I-Shaped Dimers of a Plant Chloroplast FOF1-ATP Synthase in Response to Changes in Ionic Strength International Journal of Molecular Sciences 24(13):10720 (2023)
Osipov S, Ryzhykau Y, Zinovev E, Minaeva A, Ivashchenko S, Verteletskiy D, Sudarev V, Kuklina D, Nikolaev M, Semenov Y, Zagryadskaya Y, Okhrimenko I, Gette M, Dronova E, Shishkin A, Dencher N, Kuklin A, Ivanovich V, Uversky V, Vlasov A
RgGuinier 9.6 nm
Dmax 41.5 nm
VolumePorod 1506 nm3

SASDRT8 – Сhloroplast FOF1-ATP synthase from Spinacia oleracea at 250 mM NaCl

ATP synthase subunit alpha, chloroplasticATP synthase subunit beta, chloroplasticATP synthase gamma chain, chloroplasticATP synthase delta chain, chloroplasticATP synthase epsilon chain, chloroplasticATP synthase subunit a, chloroplasticATP synthase subunit b, chloroplasticATP synthase subunit b', chloroplasticATP synthase subunit c, chloroplastic4-trans-(4-trans-Propylcyclohexyl)-cyclohexyl α-maltoside experimental SAS data
OTHER [STATIC IMAGE] model
Sample: ATP synthase subunit alpha, chloroplastic trimer, 166 kDa Spinacia oleracea protein
ATP synthase subunit beta, chloroplastic trimer, 161 kDa Spinacia oleracea protein
ATP synthase gamma chain, chloroplastic monomer, 40 kDa Spinacia oleracea protein
ATP synthase delta chain, chloroplastic monomer, 28 kDa Spinacia oleracea protein
ATP synthase epsilon chain, chloroplastic monomer, 15 kDa Spinacia oleracea protein
ATP synthase subunit a, chloroplastic monomer, 27 kDa Spinacia oleracea protein
ATP synthase subunit b, chloroplastic monomer, 21 kDa Spinacia oleracea protein
ATP synthase subunit b', chloroplastic monomer, 24 kDa Spinacia oleracea protein
ATP synthase subunit c, chloroplastic 14-mer, 112 kDa Spinacia oleracea protein
4-trans-(4-trans-Propylcyclohexyl)-cyclohexyl α-maltoside 0, 283 kDa
Buffer: 250 mM NaCl, 30 mM HEPES, 2 mM MgCl2, 0.04% (w/v) tPCC-α-M, pH: 8
Experiment: SAXS data collected at Rigaku MicroMax 007-HF, Moscow Institute of Physics and Technology (MIPT) on 2020 Oct 3
I-Shaped Dimers of a Plant Chloroplast FOF1-ATP Synthase in Response to Changes in Ionic Strength International Journal of Molecular Sciences 24(13):10720 (2023)
Osipov S, Ryzhykau Y, Zinovev E, Minaeva A, Ivashchenko S, Verteletskiy D, Sudarev V, Kuklina D, Nikolaev M, Semenov Y, Zagryadskaya Y, Okhrimenko I, Gette M, Dronova E, Shishkin A, Dencher N, Kuklin A, Ivanovich V, Uversky V, Vlasov A
RgGuinier 7.4 nm
Dmax 33.0 nm
VolumePorod 949 nm3

SASDRU8 – Сhloroplast FOF1-ATP synthase from Spinacia oleracea at 300 mM NaCl

ATP synthase subunit alpha, chloroplasticATP synthase subunit beta, chloroplasticATP synthase gamma chain, chloroplasticATP synthase delta chain, chloroplasticATP synthase epsilon chain, chloroplasticATP synthase subunit a, chloroplasticATP synthase subunit b, chloroplasticATP synthase subunit b', chloroplasticATP synthase subunit c, chloroplastic4-trans-(4-trans-Propylcyclohexyl)-cyclohexyl α-maltoside experimental SAS data
OTHER [STATIC IMAGE] model
Sample: ATP synthase subunit alpha, chloroplastic trimer, 166 kDa Spinacia oleracea protein
ATP synthase subunit beta, chloroplastic trimer, 161 kDa Spinacia oleracea protein
ATP synthase gamma chain, chloroplastic monomer, 40 kDa Spinacia oleracea protein
ATP synthase delta chain, chloroplastic monomer, 28 kDa Spinacia oleracea protein
ATP synthase epsilon chain, chloroplastic monomer, 15 kDa Spinacia oleracea protein
ATP synthase subunit a, chloroplastic monomer, 27 kDa Spinacia oleracea protein
ATP synthase subunit b, chloroplastic monomer, 21 kDa Spinacia oleracea protein
ATP synthase subunit b', chloroplastic monomer, 24 kDa Spinacia oleracea protein
ATP synthase subunit c, chloroplastic 14-mer, 112 kDa Spinacia oleracea protein
4-trans-(4-trans-Propylcyclohexyl)-cyclohexyl α-maltoside 0, 283 kDa
Buffer: 300 mM NaCl, 30 mM HEPES, 2 mM MgCl2, 0.04% (w/v) tPCC-α-M, pH: 8
Experiment: SAXS data collected at Rigaku MicroMax 007-HF, Moscow Institute of Physics and Technology (MIPT) on 2020 Oct 3
I-Shaped Dimers of a Plant Chloroplast FOF1-ATP Synthase in Response to Changes in Ionic Strength International Journal of Molecular Sciences 24(13):10720 (2023)
Osipov S, Ryzhykau Y, Zinovev E, Minaeva A, Ivashchenko S, Verteletskiy D, Sudarev V, Kuklina D, Nikolaev M, Semenov Y, Zagryadskaya Y, Okhrimenko I, Gette M, Dronova E, Shishkin A, Dencher N, Kuklin A, Ivanovich V, Uversky V, Vlasov A
RgGuinier 7.8 nm
Dmax 39.5 nm
VolumePorod 1127 nm3

SASDRV8 – Сhloroplast FOF1-ATP synthase from Spinacia oleracea at 350 mM NaCl

ATP synthase subunit alpha, chloroplasticATP synthase subunit beta, chloroplasticATP synthase gamma chain, chloroplasticATP synthase delta chain, chloroplasticATP synthase epsilon chain, chloroplasticATP synthase subunit a, chloroplasticATP synthase subunit b, chloroplasticATP synthase subunit b', chloroplasticATP synthase subunit c, chloroplastic4-trans-(4-trans-Propylcyclohexyl)-cyclohexyl α-maltoside experimental SAS data
OTHER [STATIC IMAGE] model
Sample: ATP synthase subunit alpha, chloroplastic trimer, 166 kDa Spinacia oleracea protein
ATP synthase subunit beta, chloroplastic trimer, 161 kDa Spinacia oleracea protein
ATP synthase gamma chain, chloroplastic monomer, 40 kDa Spinacia oleracea protein
ATP synthase delta chain, chloroplastic monomer, 28 kDa Spinacia oleracea protein
ATP synthase epsilon chain, chloroplastic monomer, 15 kDa Spinacia oleracea protein
ATP synthase subunit a, chloroplastic monomer, 27 kDa Spinacia oleracea protein
ATP synthase subunit b, chloroplastic monomer, 21 kDa Spinacia oleracea protein
ATP synthase subunit b', chloroplastic monomer, 24 kDa Spinacia oleracea protein
ATP synthase subunit c, chloroplastic 14-mer, 112 kDa Spinacia oleracea protein
4-trans-(4-trans-Propylcyclohexyl)-cyclohexyl α-maltoside 0, 283 kDa
Buffer: 350 mM NaCl, 30 mM HEPES, 2 mM MgCl2, 0.04% (w/v) tPCC-α-M, pH: 8
Experiment: SAXS data collected at Rigaku MicroMax 007-HF, Moscow Institute of Physics and Technology (MIPT) on 2020 Oct 3
I-Shaped Dimers of a Plant Chloroplast FOF1-ATP Synthase in Response to Changes in Ionic Strength International Journal of Molecular Sciences 24(13):10720 (2023)
Osipov S, Ryzhykau Y, Zinovev E, Minaeva A, Ivashchenko S, Verteletskiy D, Sudarev V, Kuklina D, Nikolaev M, Semenov Y, Zagryadskaya Y, Okhrimenko I, Gette M, Dronova E, Shishkin A, Dencher N, Kuklin A, Ivanovich V, Uversky V, Vlasov A
RgGuinier 8.9 nm
Dmax 44.5 nm
VolumePorod 1150 nm3

SASDRW8 – Сhloroplast FOF1-ATP synthase from Spinacia oleracea at 450 mM NaCl

ATP synthase subunit alpha, chloroplasticATP synthase subunit beta, chloroplasticATP synthase gamma chain, chloroplasticATP synthase delta chain, chloroplasticATP synthase epsilon chain, chloroplasticATP synthase subunit a, chloroplasticATP synthase subunit b, chloroplasticATP synthase subunit b', chloroplasticATP synthase subunit c, chloroplastic4-trans-(4-trans-Propylcyclohexyl)-cyclohexyl α-maltoside experimental SAS data
OTHER [STATIC IMAGE] model
Sample: ATP synthase subunit alpha, chloroplastic trimer, 166 kDa Spinacia oleracea protein
ATP synthase subunit beta, chloroplastic trimer, 161 kDa Spinacia oleracea protein
ATP synthase gamma chain, chloroplastic monomer, 40 kDa Spinacia oleracea protein
ATP synthase delta chain, chloroplastic monomer, 28 kDa Spinacia oleracea protein
ATP synthase epsilon chain, chloroplastic monomer, 15 kDa Spinacia oleracea protein
ATP synthase subunit a, chloroplastic monomer, 27 kDa Spinacia oleracea protein
ATP synthase subunit b, chloroplastic monomer, 21 kDa Spinacia oleracea protein
ATP synthase subunit b', chloroplastic monomer, 24 kDa Spinacia oleracea protein
ATP synthase subunit c, chloroplastic 14-mer, 112 kDa Spinacia oleracea protein
4-trans-(4-trans-Propylcyclohexyl)-cyclohexyl α-maltoside 0, 283 kDa
Buffer: 450 mM NaCl, 30 mM HEPES, 2 mM MgCl2, 0.04% (w/v) tPCC-α-M, pH: 8
Experiment: SAXS data collected at Rigaku MicroMax 007-HF, Moscow Institute of Physics and Technology (MIPT) on 2020 Oct 3
I-Shaped Dimers of a Plant Chloroplast FOF1-ATP Synthase in Response to Changes in Ionic Strength International Journal of Molecular Sciences 24(13):10720 (2023)
Osipov S, Ryzhykau Y, Zinovev E, Minaeva A, Ivashchenko S, Verteletskiy D, Sudarev V, Kuklina D, Nikolaev M, Semenov Y, Zagryadskaya Y, Okhrimenko I, Gette M, Dronova E, Shishkin A, Dencher N, Kuklin A, Ivanovich V, Uversky V, Vlasov A
RgGuinier 10.8 nm
Dmax 46.5 nm
VolumePorod 1703 nm3

SASDPK6 – N-terminal RNA-binding domain (NTD) of nucleocapsid protein (N) of SARS-CoV-2 in phosphate conditions

Nucleoprotein experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Nucleoprotein monomer, 15 kDa Severe acute respiratory … protein
Buffer: 25 mM potassium phosphate, 150 mM KCl, 2 mM TCEP, pH: 6.5
Experiment: SAXS data collected at EMBL P12, PETRA III on 2021 Aug 16
The preference signature of the SARS-CoV-2 Nucleocapsid NTD for its 5'-genomic RNA elements. Nat Commun 14(1):3331 (2023)
Korn SM, Dhamotharan K, Jeffries CM, Schlundt A
RgGuinier 1.6 nm
Dmax 6.1 nm
VolumePorod 23 nm3

SASDPL6 – 5'-genomic RNA Stem loop 2 and 3 of SARS-CoV-2 in phosphate conditions

Stem loop 2 and 3 in the 5'-genomic end of SARS-CoV-2 experimental SAS data
RNAMASONRY model
Sample: Stem loop 2 and 3 in the 5'-genomic end of SARS-CoV-2 monomer, 14 kDa Severe acute respiratory … RNA
Buffer: 25 mM potassium phosphate, 150 mM KCl, 2 mM TCEP, pH: 6.5
Experiment: SAXS data collected at EMBL P12, PETRA III on 2021 Nov 22
The preference signature of the SARS-CoV-2 Nucleocapsid NTD for its 5'-genomic RNA elements. Nat Commun 14(1):3331 (2023)
Korn SM, Dhamotharan K, Jeffries CM, Schlundt A
RgGuinier 2.2 nm
Dmax 8.0 nm
VolumePorod 24 nm3

SASDPM6 – 5'-genomic RNA Stem loop 4 of SARS-CoV-2 in phosphate conditions

Stem loop 4 in the 5'-genomic end of SARS-CoV-2 experimental SAS data
RNAMASONRY model
Sample: Stem loop 4 in the 5'-genomic end of SARS-CoV-2 monomer, 14 kDa Severe acute respiratory … RNA
Buffer: 25 mM potassium phosphate, 150 mM KCl, 2 mM TCEP, pH: 6.5
Experiment: SAXS data collected at EMBL P12, PETRA III on 2021 Nov 22
The preference signature of the SARS-CoV-2 Nucleocapsid NTD for its 5'-genomic RNA elements. Nat Commun 14(1):3331 (2023)
Korn SM, Dhamotharan K, Jeffries CM, Schlundt A
RgGuinier 2.0 nm
Dmax 7.1 nm
VolumePorod 22 nm3

SASDPN6 – 5'-genomic RNA Stem loop 4 with AU extension of SARS-CoV-2 in phosphate conditions

Stem loop 4 with AU extension in the 5'-genomic end of SARS-CoV-2 experimental SAS data
RNAMASONRY model
Sample: Stem loop 4 with AU extension in the 5'-genomic end of SARS-CoV-2 monomer, 22 kDa Severe acute respiratory … RNA
Buffer: 25 mM potassium phosphate, 150 mM KCl, 2 mM TCEP, pH: 6.5
Experiment: SAXS data collected at EMBL P12, PETRA III on 2021 Nov 22
The preference signature of the SARS-CoV-2 Nucleocapsid NTD for its 5'-genomic RNA elements. Nat Commun 14(1):3331 (2023)
Korn SM, Dhamotharan K, Jeffries CM, Schlundt A
RgGuinier 2.8 nm
Dmax 10.2 nm
VolumePorod 33 nm3

SASDPP6 – 5'-genomic RNA AU extension of SARS-CoV-2 in phosphate conditions

AU extension in the 5'-genomic end of SARS-CoV-2 experimental SAS data
RNAMASONRY model
Sample: AU extension in the 5'-genomic end of SARS-CoV-2 monomer, 7 kDa Severe acute respiratory … RNA
Buffer: 25 mM potassium phosphate, 150 mM KCl, 2 mM TCEP, pH: 6.5
Experiment: SAXS data collected at EMBL P12, PETRA III on 2021 Nov 22
The preference signature of the SARS-CoV-2 Nucleocapsid NTD for its 5'-genomic RNA elements. Nat Commun 14(1):3331 (2023)
Korn SM, Dhamotharan K, Jeffries CM, Schlundt A
RgGuinier 1.5 nm
Dmax 5.4 nm
VolumePorod 13 nm3