Browse by MACROMOLECULE type: protein

SASDF82 – Urokinase plasminogen activator surface receptor, uPAR H47C-N259C, complex with urokinase-type plasminogen activator (Amino Terminal Fragment, ATF).

Urokinase plasminogen activator surface receptorUrokinase-type plasminogen activator (Amino Terminal Fragment) experimental SAS data
DAMMIN model
Sample: Urokinase plasminogen activator surface receptor monomer, 37 kDa Homo sapiens protein
Urokinase-type plasminogen activator (Amino Terminal Fragment) monomer, 16 kDa Homo sapiens protein
Buffer: 20 mM PBS, 5 %(v/v) glycerol, 50 mM NaSO4,, pH: 7.4
Experiment: SAXS data collected at EMBL X33, DORIS III, DESY on 2011 Jun 18
Did evolution create a flexible ligand-binding cavity in the urokinase receptor through deletion of a plesiotypic disulfide bond? J Biol Chem (2019)
Leth JM, Mertens HDT, Leth-Espensen KZ, Jørgensen TJD, Ploug M
RgGuinier 2.6 nm
Dmax 8.2 nm
VolumePorod 102 nm3

SASDF92 – Urokinase plasminogen activator surface receptor, uPAR, T51C-V70C

Urokinase plasminogen activator surface receptor experimental SAS data
DAMMIN model
Sample: Urokinase plasminogen activator surface receptor monomer, 37 kDa Homo sapiens protein
Buffer: 20 mM PBS, 5 %(v/v) glycerol, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III on 2017 Dec 1
Did evolution create a flexible ligand-binding cavity in the urokinase receptor through deletion of a plesiotypic disulfide bond? J Biol Chem (2019)
Leth JM, Mertens HDT, Leth-Espensen KZ, Jørgensen TJD, Ploug M
RgGuinier 2.5 nm
Dmax 8.9 nm
VolumePorod 55 nm3

SASDFA2 – Urokinase plasminogen activator surface receptor, uPAR T51C-V70C, complex with urokinase-type plasminogen activator (Amino Terminal Fragment, ATF).

Urokinase plasminogen activator surface receptorUrokinase-type plasminogen activator (Amino Terminal Fragment) experimental SAS data
DAMMIN model
Sample: Urokinase plasminogen activator surface receptor monomer, 37 kDa Homo sapiens protein
Urokinase-type plasminogen activator (Amino Terminal Fragment) monomer, 16 kDa Homo sapiens protein
Buffer: 20 mM PBS, 5 %(v/v) glycerol, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III on 2017 Dec 1
Did evolution create a flexible ligand-binding cavity in the urokinase receptor through deletion of a plesiotypic disulfide bond? J Biol Chem (2019)
Leth JM, Mertens HDT, Leth-Espensen KZ, Jørgensen TJD, Ploug M
RgGuinier 2.6 nm
Dmax 8.5 nm
VolumePorod 77 nm3

SASDFB2 – Urokinase plasminogen activator surface receptor, uPAR, K50C-V70C

Urokinase plasminogen activator surface receptor experimental SAS data
DAMMIN model
Sample: Urokinase plasminogen activator surface receptor monomer, 37 kDa Homo sapiens protein
Buffer: 20 mM PBS, 5 %(v/v) glycerol, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III on 2017 May 5
Did evolution create a flexible ligand-binding cavity in the urokinase receptor through deletion of a plesiotypic disulfide bond? J Biol Chem (2019)
Leth JM, Mertens HDT, Leth-Espensen KZ, Jørgensen TJD, Ploug M
RgGuinier 2.5 nm
Dmax 9.3 nm
VolumePorod 66 nm3

SASDFC2 – Urokinase plasminogen activator surface receptor, uPAR K50C-V70C, complex with urokinase-type plasminogen activator (Amino Terminal Fragment, ATF).

Urokinase plasminogen activator surface receptorUrokinase-type plasminogen activator (Amino Terminal Fragment) experimental SAS data
DAMMIN model
Sample: Urokinase plasminogen activator surface receptor monomer, 37 kDa Homo sapiens protein
Urokinase-type plasminogen activator (Amino Terminal Fragment) monomer, 16 kDa Homo sapiens protein
Buffer: 20 mM PBS, 5 %(v/v) glycerol, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III on 2017 May 5
Did evolution create a flexible ligand-binding cavity in the urokinase receptor through deletion of a plesiotypic disulfide bond? J Biol Chem (2019)
Leth JM, Mertens HDT, Leth-Espensen KZ, Jørgensen TJD, Ploug M
RgGuinier 2.6 nm
Dmax 9.0 nm
VolumePorod 66 nm3

SASDEP9 – Cyclic GMP-AMP synthase (cGAS)

Cyclic GMP-AMP synthase experimental SAS data
Cyclic GMP-AMP synthase (cGAS) Rg histogram
Sample: Cyclic GMP-AMP synthase monomer, 61 kDa Homo sapiens protein
Buffer: 20 mM HEPES, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III on 2017 Apr 25
cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity. EMBO Rep (2019)
Liu H, Moura-Alves P, Pei G, Mollenkopf HJ, Hurwitz R, Wu X, Wang F, Liu S, Ma M, Fei Y, Zhu C, Koehler AB, Oberbeck-Mueller D, Hahnke K, Klemm M, Guhlich-Bornhof U, Ge B, Tuukkanen A, Kolbe M, Dorhoi A, Kaufmann SH
RgGuinier 3.1 nm
Dmax 12.7 nm
VolumePorod 110 nm3

SASDEQ9 – Cyclic GMP-AMP synthase (cGAS) with cyclic guanosine monophosphate–adenosine monophosphate (2'3'-cGAMP)

Cyclic GMP-AMP synthase2'-O,5'-O-((adenosine-3'-O,5'-O-diyl)bisphosphinico)guanosine experimental SAS data
Cyclic GMP-AMP synthase (cGAS) with cyclic guanosine monophosphate–adenosine monophosphate (2'3'-cGAMP) Rg histogram
Sample: Cyclic GMP-AMP synthase dimer, 123 kDa Homo sapiens protein
2'-O,5'-O-((adenosine-3'-O,5'-O-diyl)bisphosphinico)guanosine dimer, 1 kDa
Buffer: 20 mM HEPES, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III on 2017 Apr 25
cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity. EMBO Rep (2019)
Liu H, Moura-Alves P, Pei G, Mollenkopf HJ, Hurwitz R, Wu X, Wang F, Liu S, Ma M, Fei Y, Zhu C, Koehler AB, Oberbeck-Mueller D, Hahnke K, Klemm M, Guhlich-Bornhof U, Ge B, Tuukkanen A, Kolbe M, Dorhoi A, Kaufmann SH
RgGuinier 3.9 nm
Dmax 14.1 nm
VolumePorod 127 nm3

SASDET9 – Gliding motility protein MglB: A GAP of Myxococcus xanthus MglA

Gliding motility protein MglB experimental SAS data
GASBOR model
Sample: Gliding motility protein MglB dimer, 34 kDa Myxococcus xanthus protein
Buffer: 150 mM NaCl, 1 mM DTT, 20 mM Tris-HCl, pH: 8
Experiment: SAXS data collected at SWING, SOLEIL on 2017 Oct 9
MglA functions as a three-state GTPase to control movement reversals of Myxococcus xanthus. Nat Commun 10(1):5300 (2019)
Galicia C, Lhospice S, Varela PF, Trapani S, Zhang W, Navaza J, Herrou J, Mignot T, Cherfils J
RgGuinier 2.8 nm
Dmax 10.3 nm
VolumePorod 56 nm3

SASDE37 – Lysine-specific demethylase 5B, KDM5B, in HEPES buffer

Lysine-specific demethylase 5B experimental SAS data
DAMFILT model
Sample: Lysine-specific demethylase 5B monomer, 176 kDa Homo sapiens protein
Buffer: 50 mM HEPES, 300 mM NaCl, 5% (v/v) glycerol, 1mM DTT, pH: 7.7
Experiment: SAXS data collected at Xenocs BioXolver L with GeniX3D, University of Copenhagen, Department of Drug Design and Pharmacology on 2018 Oct 24
Molecular architecture of the Jumonji C family histone demethylase KDM5B. Sci Rep 9(1):4019 (2019)
Dorosz J, Kristensen LH, Aduri NG, Mirza O, Lousen R, Bucciarelli S, Mehta V, Sellés-Baiget S, Solbak SMØ, Bach A, Mesa P, Hernandez PA, Montoya G, Nguyen TTTN, Rand KD, Boesen T, Gajhede M
RgGuinier 8.8 nm
Dmax 26.9 nm

SASDKN2 – Matrix protein from Newcastle disease virus at neutral pH

Matrix protein experimental SAS data
DAMMIN model
Sample: Matrix protein, 40 kDa Newcastle disease virus … protein
Buffer: STE buffer 100 mM NaCl, 10 mM Tris-HCl, and 1 mM EDTA, pH: 4
Experiment: SAXS data collected at EMBL P12, PETRA III on 2013 Dec 11
Solution Structure, Self-Assembly, and Membrane Interactions of the Matrix Protein from Newcastle Disease Virus at Neutral and Acidic pH Journal of Virology 93(6) (2019)
Shtykova E, Petoukhov M, Dadinova L, Fedorova N, Tashkin V, Timofeeva T, Ksenofontov A, Loshkarev N, Baratova L, Jeffries C, Svergun D, Batishchev O, García-Sastre A
RgGuinier 3.5 nm