Browse by MODEL: Hybrid

SASDDP3 – N-propargyl glycine-Inactivated Proline utilization A from Bradyrhizobium diazoefficiens (formerly Bradyrhizobium japonicum) collected by SEC-SAXS

Bifunctional protein PutA experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Bifunctional protein PutA dimer, 215 kDa Bradyrhizobium diazoefficiens protein
Buffer: 50 mM Tris, 50 mM NaCl, 0.5 mM TCEP, 5% (v/v) glycerol, pH: 7.8
Experiment: SAXS data collected at BioCAT 18ID, Advanced Photon Source (APS), Argonne National Laboratory on 2017 Jul 16
Redox Modulation of Oligomeric State in Proline Utilization A. Biophys J 114(12):2833-2843 (2018)
Korasick DA, Campbell AC, Christgen SL, Chakravarthy S, White TA, Becker DF, Tanner JJ
RgGuinier 4.6 nm
Dmax 14.4 nm
VolumePorod 324 nm3

SASDDQ3 – Proline utilization A from Bradyrhizobium diazoefficiens (formerly Bradyrhizobium japonicum) collected by SEC-SAXS

Bifunctional protein PutA experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Bifunctional protein PutA tetramer, 430 kDa Bradyrhizobium diazoefficiens protein
Buffer: 50 mM Tris, 50 mM NaCl, 0.5 mM TCEP, 5% (v/v) glycerol, pH: 7.8
Experiment: SAXS data collected at BioCAT 18ID, Advanced Photon Source (APS), Argonne National Laboratory on 2017 Jul 16
Redox Modulation of Oligomeric State in Proline Utilization A. Biophys J 114(12):2833-2843 (2018)
Korasick DA, Campbell AC, Christgen SL, Chakravarthy S, White TA, Becker DF, Tanner JJ
RgGuinier 5.2 nm
Dmax 14.2 nm
VolumePorod 582 nm3

SASDDL3 – Folded ribonuclease A (RNAse)

Ribonuclease pancreatic experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Ribonuclease pancreatic monomer, 16 kDa Bos taurus protein
Buffer: phosphate buffered saline (PBS), pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III on 2013 Jul 29
Machine Learning Methods for X-Ray Scattering Data Analysis from Biomacromolecular Solutions. Biophys J 114(11):2485-2492 (2018)
Franke D, Jeffries CM, Svergun DI
RgGuinier 1.6 nm
Dmax 5.6 nm
VolumePorod 16 nm3

SASDD93 – ATP-dependent Clp protease ATP-binding subunit ClpC1

ATP-dependent Clp protease ATP-binding subunit ClpC1 experimental SAS data
OTHER model
Sample: ATP-dependent Clp protease ATP-binding subunit ClpC1, 95 kDa Mycobacterium tuberculosis protein
Buffer: Hepes 50 mM pH 7.5, KCl 100 mM, glycerol 10%, MgCl2 4 mM and ATP 1 mM, pH: 7.5
Experiment: SAXS data collected at BM29, ESRF on 2017 Sep 18
The antibiotic cyclomarin blocks arginine-phosphate-induced millisecond dynamics in the N-terminal domain of ClpC1 from Mycobacterium tuberculosis. J Biol Chem 293(22):8379-8393 (2018)
Weinhäupl K, Brennich M, Kazmaier U, Lelievre J, Ballell L, Goldberg A, Schanda P, Fraga H
RgGuinier 7.6 nm
Dmax 25.0 nm
VolumePorod 2156 nm3

SASDDF3 – Macrophage migration inhibitory factor bound to Ceruloplasmin (MIF-CP complex)

Macrophage migration inhibitory factorCeruloplasmin experimental SAS data
CLUSPRO model
Sample: Macrophage migration inhibitory factor trimer, 37 kDa Homo sapiens protein
Ceruloplasmin monomer, 122 kDa Homo sapiens protein
Buffer: 50mkm CuSO4, 100mM Hepes, pH: 7.4
Experiment: SAXS data collected at HECUS System-3, None on 2015 Dec 22
Structural Study of the Complex Formed by Ceruloplasmin and Macrophage Migration Inhibitory Factor. Biochemistry (Mosc) 83(6):701-707 (2018)
Sokolov AV, Dadinova LA, Petoukhov MV, Bourenkov G, Dubova KM, Amarantov SV, Volkov VV, Kostevich VA, Gorbunov NP, Grudinina NA, Vasilyev VB, Samygina VR
RgGuinier 3.6 nm
Dmax 14.4 nm
VolumePorod 228 nm3

SASDD46 – Artificially designed de novo protein esPN-Block (HL4) heterocomplex, e1s2 (HL4)

extender PN-Block (HL4)stopper PN-Block (WA20) experimental SAS data
DAMMIN model
Sample: Extender PN-Block (HL4) monomer, 27 kDa de novo protein protein
Stopper PN-Block (WA20) dimer, 25 kDa de novo protein protein
Buffer: 20 mM HEPES, 100 mM NaCl, 200 mM ArgHCl, 10% glycerol, pH: 7.5
Experiment: SAXS data collected at BL-10C, Photon Factory (PF), High Energy Accelerator Research Organization (KEK) on 2014 Dec 19
Self-Assembling Supramolecular Nanostructures Constructed from de Novo Extender Protein Nanobuilding Blocks. ACS Synth Biol 7(5):1381-1394 (2018)
Kobayashi N, Inano K, Sasahara K, Sato T, Miyazawa K, Fukuma T, Hecht MH, Song C, Murata K, Arai R
RgGuinier 3.6 nm
Dmax 15.0 nm

SASDD56 – Artificially designed de novo protein esPN-Block (FL4) heterocomplex, e1s2 (FL4)

stopper PN-Block (WA20)extender PN-Block (FL4) experimental SAS data
DAMMIN model
Sample: Stopper PN-Block (WA20) dimer, 25 kDa de novo protein protein
Extender PN-Block (FL4) monomer, 27 kDa de novo protein protein
Buffer: 20 mM HEPES, 100 mM NaCl, 200 mM ArgHCl, 10% glycerol, pH: 7.5
Experiment: SAXS data collected at BL-10C, Photon Factory (PF), High Energy Accelerator Research Organization (KEK) on 2014 Dec 19
Self-Assembling Supramolecular Nanostructures Constructed from de Novo Extender Protein Nanobuilding Blocks. ACS Synth Biol 7(5):1381-1394 (2018)
Kobayashi N, Inano K, Sasahara K, Sato T, Miyazawa K, Fukuma T, Hecht MH, Song C, Murata K, Arai R
RgGuinier 3.3 nm
Dmax 12.0 nm

SASDB43 – Human dystrophin central domain repeats 1 to 2

Dystrophin central domain repeats 1 to 2 experimental SAS data
NONE model
Sample: Dystrophin central domain repeats 1 to 2 monomer, 26 kDa Homo sapiens protein
Buffer: 20 mM Tris 150 mM NaCl 1 mM EDTA 2% glycerol, pH: 7.5
Experiment: SAXS data collected at SWING, SOLEIL on 2011 Oct 7
Dystrophin's central domain forms a complex filament that becomes disorganized by in-frame deletions. J Biol Chem 293(18):6637-6646 (2018)
Delalande O, Molza AE, Dos Santos Morais R, Chéron A, Pollet É, Raguenes-Nicol C, Tascon C, Giudice E, Guilbaud M, Nicolas A, Bondon A, Leturcq F, Férey N, Baaden M, Perez J, Roblin P, Piétri-Rouxel F, Hubert JF, Czjzek M, Le Rumeur E
RgGuinier 3.0 nm
Dmax 10.6 nm
VolumePorod 42 nm3

SASDB53 – Human dystrophin central domain repeats 1 to 3

Dystrophin central domain repeats 1 to 3 experimental SAS data
NONE model
Sample: Dystrophin central domain repeats 1 to 3 monomer, 38 kDa Homo sapiens protein
Buffer: 20 mM Tris 150 mM NaCl 1 mM EDTA 2% glycerol, pH: 7.5
Experiment: SAXS data collected at SWING, SOLEIL on 2011 Sep 9
Dystrophin's central domain forms a complex filament that becomes disorganized by in-frame deletions. J Biol Chem 293(18):6637-6646 (2018)
Delalande O, Molza AE, Dos Santos Morais R, Chéron A, Pollet É, Raguenes-Nicol C, Tascon C, Giudice E, Guilbaud M, Nicolas A, Bondon A, Leturcq F, Férey N, Baaden M, Perez J, Roblin P, Piétri-Rouxel F, Hubert JF, Czjzek M, Le Rumeur E
RgGuinier 4.2 nm
Dmax 17.0 nm
VolumePorod 68 nm3

SASDB63 – Human dystrophin central domain repeats 11 to 15

Dystrophin central domain repeats 11 to 15. experimental SAS data
NONE model
Sample: Dystrophin central domain repeats 11 to 15. monomer, 60 kDa Homo sapiens protein
Buffer: 20 mM Tris 150 mM NaCl 1 mM EDTA 2% glycerol, pH: 7.5
Experiment: SAXS data collected at BM29, ESRF on 2011 Apr 11
Dystrophin's central domain forms a complex filament that becomes disorganized by in-frame deletions. J Biol Chem 293(18):6637-6646 (2018)
Delalande O, Molza AE, Dos Santos Morais R, Chéron A, Pollet É, Raguenes-Nicol C, Tascon C, Giudice E, Guilbaud M, Nicolas A, Bondon A, Leturcq F, Férey N, Baaden M, Perez J, Roblin P, Piétri-Rouxel F, Hubert JF, Czjzek M, Le Rumeur E
RgGuinier 5.8 nm
Dmax 23.0 nm
VolumePorod 87 nm3