Browse by ORGANISM: Homo sapiens (Human)

SASDDR5 – Human metaphase chromosomes in 5 mM magnesium chloride

Human metaphase chromosomes in 5 mM magnesium chloride experimental SAS data
Human metaphase chromosomes in 5 mM magnesium chloride Kratky plot
Sample: Human metaphase chromosomes in 5 mM magnesium chloride monomer, 0 kDa Homo sapiens
Buffer: 10 mM PIPES, 5 mM magnesium chloride, 10 mM sodium chloride, 120 mM potassium chloride, 40% glycerol, pH: 7.2
Experiment: SAXS data collected at BL11 - NCD, ALBA on 2013 Jun 6
Frozen-hydrated chromatin from metaphase chromosomes has an interdigitated multilayer structure. EMBO J 38(7) (2019)
Chicano A, Crosas E, Otón J, Melero R, Engel BD, Daban JR

SASDDS5 – Human metaphase chromosomes in 1 mM hexaamminecobalt(III) chloride

Human metaphase chromosomes in 1 mM hexaamminecobalt(III) chloride experimental SAS data
Human metaphase chromosomes in 1 mM hexaamminecobalt(III) chloride Kratky plot
Sample: Human metaphase chromosomes in 1 mM hexaamminecobalt(III) chloride monomer, 0 kDa Homo sapiens
Buffer: 10 mM PIPES, hexaamminecobalt(III) chloride, 40% glycerol, pH: 7.2
Experiment: SAXS data collected at BL11 - NCD, ALBA on 2013 Sep 12
Frozen-hydrated chromatin from metaphase chromosomes has an interdigitated multilayer structure. EMBO J 38(7) (2019)
Chicano A, Crosas E, Otón J, Melero R, Engel BD, Daban JR

SASDF82 – Urokinase plasminogen activator surface receptor, uPAR H47C-N259C, complex with urokinase-type plasminogen activator (Amino Terminal Fragment, ATF).

Urokinase plasminogen activator surface receptorUrokinase-type plasminogen activator (Amino Terminal Fragment) experimental SAS data
DAMMIN model
Sample: Urokinase plasminogen activator surface receptor monomer, 37 kDa Homo sapiens protein
Urokinase-type plasminogen activator (Amino Terminal Fragment) monomer, 16 kDa Homo sapiens protein
Buffer: 20 mM PBS, 5 %(v/v) glycerol, 50 mM NaSO4,, pH: 7.4
Experiment: SAXS data collected at EMBL X33, DORIS III, DESY on 2011 Jun 18
Did evolution create a flexible ligand-binding cavity in the urokinase receptor through deletion of a plesiotypic disulfide bond? J Biol Chem (2019)
Leth JM, Mertens HDT, Leth-Espensen KZ, Jørgensen TJD, Ploug M
RgGuinier 2.6 nm
Dmax 8.2 nm
VolumePorod 102 nm3

SASDF92 – Urokinase plasminogen activator surface receptor, uPAR, T51C-V70C

Urokinase plasminogen activator surface receptor experimental SAS data
DAMMIN model
Sample: Urokinase plasminogen activator surface receptor monomer, 37 kDa Homo sapiens protein
Buffer: 20 mM PBS, 5 %(v/v) glycerol, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III on 2017 Dec 1
Did evolution create a flexible ligand-binding cavity in the urokinase receptor through deletion of a plesiotypic disulfide bond? J Biol Chem (2019)
Leth JM, Mertens HDT, Leth-Espensen KZ, Jørgensen TJD, Ploug M
RgGuinier 2.5 nm
Dmax 8.9 nm
VolumePorod 55 nm3

SASDFA2 – Urokinase plasminogen activator surface receptor, uPAR T51C-V70C, complex with urokinase-type plasminogen activator (Amino Terminal Fragment, ATF).

Urokinase plasminogen activator surface receptorUrokinase-type plasminogen activator (Amino Terminal Fragment) experimental SAS data
DAMMIN model
Sample: Urokinase plasminogen activator surface receptor monomer, 37 kDa Homo sapiens protein
Urokinase-type plasminogen activator (Amino Terminal Fragment) monomer, 16 kDa Homo sapiens protein
Buffer: 20 mM PBS, 5 %(v/v) glycerol, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III on 2017 Dec 1
Did evolution create a flexible ligand-binding cavity in the urokinase receptor through deletion of a plesiotypic disulfide bond? J Biol Chem (2019)
Leth JM, Mertens HDT, Leth-Espensen KZ, Jørgensen TJD, Ploug M
RgGuinier 2.6 nm
Dmax 8.5 nm
VolumePorod 77 nm3

SASDFB2 – Urokinase plasminogen activator surface receptor, uPAR, K50C-V70C

Urokinase plasminogen activator surface receptor experimental SAS data
DAMMIN model
Sample: Urokinase plasminogen activator surface receptor monomer, 37 kDa Homo sapiens protein
Buffer: 20 mM PBS, 5 %(v/v) glycerol, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III on 2017 May 5
Did evolution create a flexible ligand-binding cavity in the urokinase receptor through deletion of a plesiotypic disulfide bond? J Biol Chem (2019)
Leth JM, Mertens HDT, Leth-Espensen KZ, Jørgensen TJD, Ploug M
RgGuinier 2.5 nm
Dmax 9.3 nm
VolumePorod 66 nm3

SASDFC2 – Urokinase plasminogen activator surface receptor, uPAR K50C-V70C, complex with urokinase-type plasminogen activator (Amino Terminal Fragment, ATF).

Urokinase plasminogen activator surface receptorUrokinase-type plasminogen activator (Amino Terminal Fragment) experimental SAS data
DAMMIN model
Sample: Urokinase plasminogen activator surface receptor monomer, 37 kDa Homo sapiens protein
Urokinase-type plasminogen activator (Amino Terminal Fragment) monomer, 16 kDa Homo sapiens protein
Buffer: 20 mM PBS, 5 %(v/v) glycerol, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III on 2017 May 5
Did evolution create a flexible ligand-binding cavity in the urokinase receptor through deletion of a plesiotypic disulfide bond? J Biol Chem (2019)
Leth JM, Mertens HDT, Leth-Espensen KZ, Jørgensen TJD, Ploug M
RgGuinier 2.6 nm
Dmax 9.0 nm
VolumePorod 66 nm3

SASDEP9 – Cyclic GMP-AMP synthase (cGAS)

Cyclic GMP-AMP synthase experimental SAS data
Cyclic GMP-AMP synthase (cGAS) Rg histogram
Sample: Cyclic GMP-AMP synthase monomer, 61 kDa Homo sapiens protein
Buffer: 20 mM HEPES, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III on 2017 Apr 25
cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity. EMBO Rep (2019)
Liu H, Moura-Alves P, Pei G, Mollenkopf HJ, Hurwitz R, Wu X, Wang F, Liu S, Ma M, Fei Y, Zhu C, Koehler AB, Oberbeck-Mueller D, Hahnke K, Klemm M, Guhlich-Bornhof U, Ge B, Tuukkanen A, Kolbe M, Dorhoi A, Kaufmann SH
RgGuinier 3.1 nm
Dmax 12.7 nm
VolumePorod 110 nm3

SASDEQ9 – Cyclic GMP-AMP synthase (cGAS) with cyclic guanosine monophosphate–adenosine monophosphate (2'3'-cGAMP)

Cyclic GMP-AMP synthase2'-O,5'-O-((adenosine-3'-O,5'-O-diyl)bisphosphinico)guanosine experimental SAS data
Cyclic GMP-AMP synthase (cGAS) with cyclic guanosine monophosphate–adenosine monophosphate (2'3'-cGAMP) Rg histogram
Sample: Cyclic GMP-AMP synthase dimer, 123 kDa Homo sapiens protein
2'-O,5'-O-((adenosine-3'-O,5'-O-diyl)bisphosphinico)guanosine dimer, 1 kDa
Buffer: 20 mM HEPES, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III on 2017 Apr 25
cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity. EMBO Rep (2019)
Liu H, Moura-Alves P, Pei G, Mollenkopf HJ, Hurwitz R, Wu X, Wang F, Liu S, Ma M, Fei Y, Zhu C, Koehler AB, Oberbeck-Mueller D, Hahnke K, Klemm M, Guhlich-Bornhof U, Ge B, Tuukkanen A, Kolbe M, Dorhoi A, Kaufmann SH
RgGuinier 3.9 nm
Dmax 14.1 nm
VolumePorod 127 nm3

SASDE37 – Lysine-specific demethylase 5B, KDM5B, in HEPES buffer

Lysine-specific demethylase 5B experimental SAS data
DAMFILT model
Sample: Lysine-specific demethylase 5B monomer, 176 kDa Homo sapiens protein
Buffer: 50 mM HEPES, 300 mM NaCl, 5% (v/v) glycerol, 1mM DTT, pH: 7.7
Experiment: SAXS data collected at Xenocs BioXolver L with GeniX3D, University of Copenhagen, Department of Drug Design and Pharmacology on 2018 Oct 24
Molecular architecture of the Jumonji C family histone demethylase KDM5B. Sci Rep 9(1):4019 (2019)
Dorosz J, Kristensen LH, Aduri NG, Mirza O, Lousen R, Bucciarelli S, Mehta V, Sellés-Baiget S, Solbak SMØ, Bach A, Mesa P, Hernandez PA, Montoya G, Nguyen TTTN, Rand KD, Boesen T, Gajhede M
RgGuinier 8.8 nm
Dmax 26.9 nm