Search

 
Advanced search  

93 hits found for DNA-binding protein

SASDGP2 – ...protein (JBP1)

Thymine dioxygenase JBP1 experimental SAS data
Thymine dioxygenase JBP1 Kratky plot
Sample: Thymine dioxygenase JBP1 monomer, 93 kDa Leishmania tarentolae protein
Buffer: 20 mM HEPES, 200 mM NaCl, 1 mM TCEP, pH: 7.5
Experiment: SAXS data collected at BM29, ESRF on 2016 Feb 21
...protein J-DNA-binding protein 1 suggests synergy between base J DNA binding and thymidine hydroxylase activity. J Biol Chem (2019)
Adamopoulos A, Heidebrecht T, Roosendaal J, Touw WG, Phan IQ, Beijnen J, Perrakis A
RgGuinier 3.4 nm
Dmax 12.0 nm
VolumePorod 128 nm3

SASDGQ2 – Thymine dioxygenase lacking the JDNA binding domain Delta-JDBD (Δ-JDBD)

Delta-JDBD experimental SAS data
Delta-JDBD Kratky plot
Sample: Delta-JDBD monomer, 72 kDa Leismania tarentolae protein
Buffer: 20 mM HEPES, 200 mM NaCl, 1 mM TCEP, pH: 7.5
Experiment: SAXS data collected at BM29, ESRF on 2016 Feb 21
...protein J-DNA-binding protein 1 suggests synergy between base J DNA binding and thymidine hydroxylase activity. J Biol Chem (2019)
Adamopoulos A, Heidebrecht T, Roosendaal J, Touw WG, Phan IQ, Beijnen J, Perrakis A
RgGuinier 3.1 nm
Dmax 9.9 nm
VolumePorod 108 nm3

SASDGR2 – Thymine dioxygenase J-containing DNA binding domain (JDBD)

J-DNA binding domain experimental SAS data
J-DNA binding domain Kratky plot
Sample: J-DNA binding domain monomer, 21 kDa Leishmania tarentolae protein
Buffer: 20 mM HEPES, 200 mM NaCl, 1 mM TCEP, pH: 7.5
Experiment: SAXS data collected at BM29, ESRF on 2017 Feb 4
...protein J-DNA-binding protein 1 suggests synergy between base J DNA binding and thymidine hydroxylase activity. J Biol Chem (2019)
Adamopoulos A, Heidebrecht T, Roosendaal J, Touw WG, Phan IQ, Beijnen J, Perrakis A
RgGuinier 2.2 nm
Dmax 7.1 nm
VolumePorod 38 nm3

SASDGS2 – J-23-DNA

J-DNA (23mer) experimental SAS data
J-DNA (23mer) Kratky plot
Sample: J-DNA (23mer) monomer, 14 kDa DNA
Buffer: 20 mM HEPES, 200 mM NaCl, 1 mM TCEP, pH: 7.5
Experiment: SAXS data collected at BM29, ESRF on 2016 Feb 21
...protein J-DNA-binding protein 1 suggests synergy between base J DNA binding and thymidine hydroxylase activity. J Biol Chem (2019)
Adamopoulos A, Heidebrecht T, Roosendaal J, Touw WG, Phan IQ, Beijnen J, Perrakis A
RgGuinier 2.3 nm
Dmax 7.3 nm
VolumePorod 20 nm3

SASDGT2 – Thymine dioxygenase J-containing DNA binding domain in complex with J-23-DNA (JDBD:J-23-DNA)

J-DNA binding domainJ-DNA (23mer) experimental SAS data
J-DNA binding domain J-DNA (23mer) Kratky plot
Sample: J-DNA binding domain monomer, 21 kDa Leishmania tarentolae protein
J-DNA (23mer) monomer, 14 kDa DNA
Buffer: 20 mM HEPES, 200 mM NaCl, 1 mM TCEP, pH: 7.5
Experiment: SAXS data collected at BM29, ESRF on 2016 Feb 21
...protein J-DNA-binding protein 1 suggests synergy between base J DNA binding and thymidine hydroxylase activity. J Biol Chem (2019)
Adamopoulos A, Heidebrecht T, Roosendaal J, Touw WG, Phan IQ, Beijnen J, Perrakis A
RgGuinier 2.5 nm
Dmax 8.6 nm
VolumePorod 43 nm3

SASDGU2 – ...protein in complex with J-23-DNA (JBP1:J-23-DNA)

Thymine dioxygenase JBP1J-DNA (23mer) experimental SAS data
Thymine dioxygenase JBP1 J-DNA (23mer) Kratky plot
Sample: Thymine dioxygenase JBP1 monomer, 93 kDa Leishmania tarentolae protein
J-DNA (23mer) monomer, 14 kDa DNA
Buffer: 20 mM HEPES, 200 mM NaCl, 1 mM TCEP, pH: 7.5
Experiment: SAXS data collected at BM29, ESRF on 2016 Feb 21
...protein J-DNA-binding protein 1 suggests synergy between base J DNA binding and thymidine hydroxylase activity. J Biol Chem (2019)
Adamopoulos A, Heidebrecht T, Roosendaal J, Touw WG, Phan IQ, Beijnen J, Perrakis A
RgGuinier 4.1 nm
Dmax 14.1 nm
VolumePorod 148 nm3

SASDEH3 – ...protein of the pXO1-like plasmid pBc10987 from B. cereus (Bc-TubR) bound to S48 DNA (Bc-TubR : S48 DNA complex)

S48 DNA strand 1S48 DNA strand 2TubR of the pXO1-like plasmid pBc10987 from B. cereus (Bc-TubR) experimental SAS data
MOLECULAR DYNAMICS FRAME model
Sample: S48 DNA strand 1 monomer, 21 kDa DNA
S48 DNA strand 2 monomer, 21 kDa DNA
TubR of the pXO1-like plasmid pBc10987 from B. cereus (Bc-TubR) decamer, 137 kDa protein
Buffer: 0.1 M NaCl, 10 mM Tris, pH: 8
Experiment: SAXS data collected at BL-10C, Photon Factory (PF), High Energy Accelerator Research Organization (KEK) on 2017 Nov 28
...Protein TubR from the Bacillus cereus pXO1 Plasmid. J Mol Biol (2018)
Hayashi I, Oda T, Sato M, Fuchigami S
RgGuinier 6.1 nm
Dmax 23.0 nm
VolumePorod 305 nm3

SASDPZ3 – Complex of XPA1-239 and RPAΔ32NΔ70N complex engaged on 3’ss-ds DNA junction NER substrate

DNA repair protein complementing XP-A cellsReplication protein A 70 kDa DNA-binding subunitReplication protein A 32 kDa subunitReplication protein A 14 kDa subunit3-prime ss-ds DNA junction NER model substrate experimental SAS data
MES-FOXS model
Sample: ...protein complementing XP-A cells monomer, 27 kDa Homo sapiens protein
...protein A 70 kDa DNA-binding subunit monomer, 49 kDa Homo sapiens protein
...protein A 32 kDa subunit monomer, 25 kDa Homo sapiens protein
...protein A 14 kDa subunit monomer, 14 kDa Homo sapiens protein
3-prime ss-ds DNA junction NER model substrate monomer, 17 kDa DNA
Buffer: 20 mM Tris pH 8.0, 150 mM NaCl, 2% glycerol, 1 mM DTT, pH: 8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2020 Mar 4
Two interaction surfaces between XPA and RPA organize the preincision complex in nucleotide excision repair Proceedings of the National Academy of Sciences 119(34) (2022)
Kim M, Kim H, D’Souza A, Gallagher K, Jeong E, Topolska-Wós A, Ogorodnik Le Meur K, Tsai C, Tsai M, Kee M, Tainer J, Yeo J, Chazin W, Schärer O
RgGuinier 4.3 nm
Dmax 14.7 nm
VolumePorod 189 nm3

SASDP24 – Complex of XPA1-239 and RPAΔ32NΔ70N complex engaged on 5’ss-ds DNA junction NER substrate

Replication protein A 14 kDa subunitDNA repair protein complementing XP-A cellsReplication protein A 70 kDa DNA-binding subunitReplication protein A 32 kDa subunit5-prime ss-ds DNA junction NER model substrate experimental SAS data
MES-FOXS model
Sample: ...protein A 14 kDa subunit monomer, 14 kDa Homo sapiens protein
...protein complementing XP-A cells monomer, 27 kDa Homo sapiens protein
...protein A 70 kDa DNA-binding subunit monomer, 49 kDa Homo sapiens protein
...protein A 32 kDa subunit monomer, 25 kDa Homo sapiens protein
5-prime ss-ds DNA junction NER model substrate monomer, 17 kDa DNA
Buffer: 20 mM Tris pH 8.0, 150 mM NaCl, 2% glycerol, 1 mM DTT, pH: 8
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2020 Mar 4
Two interaction surfaces between XPA and RPA organize the preincision complex in nucleotide excision repair Proceedings of the National Academy of Sciences 119(34) (2022)
Kim M, Kim H, D’Souza A, Gallagher K, Jeong E, Topolska-Wós A, Ogorodnik Le Meur K, Tsai C, Tsai M, Kee M, Tainer J, Yeo J, Chazin W, Schärer O
RgGuinier 4.6 nm
Dmax 16.5 nm
VolumePorod 220 nm3

SASDH44 – 3' Complex of XPA-DBD and RPA70AB

DNA repair protein complementing XP-A cellsReplication protein A 70 kDa DNA-binding subunit3-prime  Nucleotide Excision Repair Junction Model Substrate experimental SAS data
HADDOCK model
Sample: ...protein complementing XP-A cells monomer, 17 kDa Homo sapiens protein
...protein A 70 kDa DNA-binding subunit monomer, 27 kDa Homo sapiens protein
3-prime Nucleotide Excision Repair Junction Model Substrate monomer, 11 kDa DNA
Buffer: 20 mM Tris, 150 mM NaCl, 2% glycerol, 1 mM DTT, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 17 Nov 2
A key interaction with RPA orients XPA in NER complexes. Nucleic Acids Res (2020)
Topolska-Woś AM, Sugitani N, Cordoba JJ, Le Meur KV, Le Meur RA, Kim HS, Yeo JE, Rosenberg D, Hammel M, Schärer OD, Chazin WJ
RgGuinier 3.1 nm
Dmax 9.7 nm
VolumePorod 103 nm3

SASDH54 – 5' Complex of XPA-DBD with RPA70AB

DNA repair protein complementing XP-A cellsReplication protein A 70 kDa DNA-binding subunit5-prime Nucleotide Excision Repair Junction Model Substrate experimental SAS data
HADDOCK model
Sample: ...protein complementing XP-A cells monomer, 17 kDa Homo sapiens protein
...protein A 70 kDa DNA-binding subunit monomer, 27 kDa Homo sapiens protein
5-prime Nucleotide Excision Repair Junction Model Substrate monomer, 11 kDa DNA
Buffer: 20 mM Tris, 150 mM NaCl, 2% glycerol, 1 mM DTT, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2019 Jun 4
A key interaction with RPA orients XPA in NER complexes. Nucleic Acids Res (2020)
Topolska-Woś AM, Sugitani N, Cordoba JJ, Le Meur KV, Le Meur RA, Kim HS, Yeo JE, Rosenberg D, Hammel M, Schärer OD, Chazin WJ
RgGuinier 2.9 nm
Dmax 97.0 nm
VolumePorod 87 nm3

SASDKF4 – ...protein of starvation (DPS)

DNA protection during starvation protein experimental SAS data
DAMMIN model
Sample: ...protein dodecamer, 225 kDa Escherichia coli protein
Buffer: 50 mM Tris-HCl, 50 mM NaCl, 0.5 mM EDTA, pH: 8
Experiment: SAXS data collected at EMBL P12, PETRA III on 2018 Nov 26
Spatial Organization of Dps and DNA-Dps Complexes. J Mol Biol :166930 (2021)
Dubrovin EV, Dadinova LA, Petoukhov MV, Yu Soshinskaya E, Mozhaev AA, Klinov DV, Schäffer TE, Shtykova EV, Batishchev OV
RgGuinier 3.9 nm
Dmax 14.0 nm
VolumePorod 314 nm3

SASDPK4 – His-tagged RdfS Excisionase monomeric in solution

DNA-binding protein experimental SAS data
His-tagged RdfS Excisionase monomeric in solution Rg histogram
Sample: DNA-binding protein monomer, 13 kDa Mesorhizobium loti protein
Buffer: 150 mM Tris-HCl, 300 mM NaCl, 5% v/v glycerol, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2019 Jun 19
Crystallographic and X-ray scattering study of RdfS, a recombination directionality factor from an integrative and conjugative element Acta Crystallographica Section D Structural Biology 78(10) (2022)
Verdonk C, Marshall A, Ramsay J, Bond C
RgGuinier 2.2 nm
Dmax 9.2 nm
VolumePorod 23 nm3

SASDQT4DNA-binding protein from starved cells: DgrDpsWT in 50 mM MOPS pH 7.0, 230 mM NaCl

DNA protection during starvation, DPS (Ferritin superfamily) experimental SAS data
GASBOR model
Sample: DNA protection during starvation, DPS (Ferritin superfamily) dodecamer, 270 kDa Deinococcus grandis protein
Buffer: 50 mM MOPS-NaOH, 230 mM NaCl, pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III on 2021 Nov 8
Controlled modulation of the dynamics of the Deinococcus grandis Dps N-terminal tails by divalent metals. Protein Sci :e4567 (2023)
Guerra JPL, Blanchet CE, Vieira BJC, Waerenborgh JC, Jones NC, Hoffmann SV, Pereira AS, Tavares P
RgGuinier 4.5 nm
Dmax 20.0 nm
VolumePorod 454 nm3

SASDQU4DNA-binding protein from starved cells: DgrDpsWT + 6 Zn2+ in 50 mM MOPS pH 7.0, 230 mM NaCl

DNA protection during starvation, DPS (Ferritin superfamily) experimental SAS data
GASBOR model
Sample: DNA protection during starvation, DPS (Ferritin superfamily) dodecamer, 270 kDa Deinococcus grandis protein
Buffer: 50 mM MOPS-NaOH, 230 mM NaCl, pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III on 2021 Nov 8
Controlled modulation of the dynamics of the Deinococcus grandis Dps N-terminal tails by divalent metals. Protein Sci :e4567 (2023)
Guerra JPL, Blanchet CE, Vieira BJC, Waerenborgh JC, Jones NC, Hoffmann SV, Pereira AS, Tavares P
RgGuinier 4.4 nm
Dmax 18.4 nm
VolumePorod 440 nm3

SASDQV4DNA-binding protein from starved cells: DgrDpsWT + 12 Zn2+ in 50 mM MOPS pH 7.0, 230 mM NaCl

DNA protection during starvation, DPS (Ferritin superfamily) experimental SAS data
GASBOR model
Sample: DNA protection during starvation, DPS (Ferritin superfamily) dodecamer, 270 kDa Deinococcus grandis protein
Buffer: 50 mM MOPS-NaOH, 230 mM NaCl, pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III on 2021 Nov 8
Controlled modulation of the dynamics of the Deinococcus grandis Dps N-terminal tails by divalent metals. Protein Sci :e4567 (2023)
Guerra JPL, Blanchet CE, Vieira BJC, Waerenborgh JC, Jones NC, Hoffmann SV, Pereira AS, Tavares P
RgGuinier 4.2 nm
Dmax 15.5 nm
VolumePorod 464 nm3

SASDQW4DNA-binding protein from starved cells: DgrDpsWT + 24 Zn2+ in 50 mM MOPS pH 7.0, 230 mM NaCl

DNA protection during starvation, DPS (Ferritin superfamily) experimental SAS data
GASBOR model
Sample: DNA protection during starvation, DPS (Ferritin superfamily) dodecamer, 270 kDa Deinococcus grandis protein
Buffer: 50 mM MOPS-NaOH, 230 mM NaCl, pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III on 2021 Nov 8
Controlled modulation of the dynamics of the Deinococcus grandis Dps N-terminal tails by divalent metals. Protein Sci :e4567 (2023)
Guerra JPL, Blanchet CE, Vieira BJC, Waerenborgh JC, Jones NC, Hoffmann SV, Pereira AS, Tavares P
RgGuinier 4.2 nm
Dmax 14.1 nm
VolumePorod 439 nm3

SASDQX4DNA-binding protein from starved cells: DgrDpsWT + 48 Zn2+ in 50 mM MOPS pH 7.0, 230 mM NaCl

DNA protection during starvation, DPS (Ferritin superfamily) experimental SAS data
GASBOR model
Sample: DNA protection during starvation, DPS (Ferritin superfamily) dodecamer, 270 kDa Deinococcus grandis protein
Buffer: 50 mM MOPS-NaOH, 230 mM NaCl, pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III on 2021 Nov 8
Controlled modulation of the dynamics of the Deinococcus grandis Dps N-terminal tails by divalent metals. Protein Sci :e4567 (2023)
Guerra JPL, Blanchet CE, Vieira BJC, Waerenborgh JC, Jones NC, Hoffmann SV, Pereira AS, Tavares P
RgGuinier 4.2 nm
Dmax 14.4 nm
VolumePorod 427 nm3

SASDKY4 – ...protein of starvation (no EDTA)

DNA protection during starvation protein experimental SAS data
DAMMIN model
Sample: ...protein dodecamer, 225 kDa Escherichia coli protein
Buffer: 20мМ Tris-HCl, 100 мМ NaCl, pH: 7.5
Experiment: SAXS data collected at EMBL P12, PETRA III on 2018 Nov 19
Spatial Organization of Dps and DNA-Dps Complexes. J Mol Biol :166930 (2021)
Dubrovin EV, Dadinova LA, Petoukhov MV, Yu Soshinskaya E, Mozhaev AA, Klinov DV, Schäffer TE, Shtykova EV, Batishchev OV
RgGuinier 3.8 nm
Dmax 11.9 nm
VolumePorod 277 nm3

SASDQY4DNA-binding protein from starved cells: DgrDpsWT + 24 Zn2+ in 50 mM MOPS pH 7.0, 230 mM NaCl, 5 mM EDTA

DNA protection during starvation, DPS (Ferritin superfamily) experimental SAS data
GASBOR model
Sample: DNA protection during starvation, DPS (Ferritin superfamily) dodecamer, 270 kDa Deinococcus grandis protein
Buffer: 50 mM MOPS, 230 mM NaCl, 5 mM EDTA, pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III on 2021 Nov 8
Controlled modulation of the dynamics of the Deinococcus grandis Dps N-terminal tails by divalent metals. Protein Sci :e4567 (2023)
Guerra JPL, Blanchet CE, Vieira BJC, Waerenborgh JC, Jones NC, Hoffmann SV, Pereira AS, Tavares P
RgGuinier 4.5 nm
Dmax 19.5 nm
VolumePorod 453 nm3

SASDQZ4DNA-binding protein from starved cells: DgrDpsWT + 24 Co2+ in 50 mM MOPS pH 7.0, 230 mM NaCl

DNA protection during starvation, DPS (Ferritin superfamily) experimental SAS data
GASBOR model
Sample: DNA protection during starvation, DPS (Ferritin superfamily) dodecamer, 270 kDa Deinococcus grandis protein
Buffer: 50 mM MOPS-NaOH, 230 mM NaCl, pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III on 2021 Nov 8
Controlled modulation of the dynamics of the Deinococcus grandis Dps N-terminal tails by divalent metals. Protein Sci :e4567 (2023)
Guerra JPL, Blanchet CE, Vieira BJC, Waerenborgh JC, Jones NC, Hoffmann SV, Pereira AS, Tavares P
RgGuinier 4.2 nm
Dmax 13.9 nm
VolumePorod 458 nm3

SASDQ25DNA-binding protein from starved cells: DgrDpsWT + 24 Mn2+ in 50 mM MOPS pH 7.0, 230 mM NaCl

DNA protection during starvation, DPS (Ferritin superfamily) experimental SAS data
GASBOR model
Sample: DNA protection during starvation, DPS (Ferritin superfamily) dodecamer, 270 kDa Deinococcus grandis protein
Buffer: 50 mM MOPS-NaOH, 230 mM NaCl, pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III on 2021 Nov 8
Controlled modulation of the dynamics of the Deinococcus grandis Dps N-terminal tails by divalent metals. Protein Sci :e4567 (2023)
Guerra JPL, Blanchet CE, Vieira BJC, Waerenborgh JC, Jones NC, Hoffmann SV, Pereira AS, Tavares P
RgGuinier 4.4 nm
Dmax 19.3 nm
VolumePorod 438 nm3

SASDQ35DNA-binding protein from starved cells: DgrDps-D43A mutant in 50 mM MOPS pH 7.0, 230 mM NaCl

DNA protection during starvation, DPS-D43A (Ferritin superfamily) dodecamer D43A mutation experimental SAS data
GASBOR model
Sample: DNA protection during starvation, DPS-D43A (Ferritin superfamily) dodecamer D43A mutation dodecamer, 270 kDa Deinococcus grandis protein
Buffer: 50 mM MOPS-NaOH, 230 mM NaCl, pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III on 2021 Nov 8
Controlled modulation of the dynamics of the Deinococcus grandis Dps N-terminal tails by divalent metals. Protein Sci :e4567 (2023)
Guerra JPL, Blanchet CE, Vieira BJC, Waerenborgh JC, Jones NC, Hoffmann SV, Pereira AS, Tavares P
RgGuinier 4.5 nm
Dmax 19.8 nm
VolumePorod 451 nm3

SASDQ45DNA-binding protein from starved cells: DgrDps-D43A mutant + 24 Zn2+ in 50 mM MOPS pH 7.0, 230 mM NaCl

DNA protection during starvation, DPS-D43A (Ferritin superfamily) dodecamer D43A mutation experimental SAS data
GASBOR model
Sample: DNA protection during starvation, DPS-D43A (Ferritin superfamily) dodecamer D43A mutation dodecamer, 270 kDa Deinococcus grandis protein
Buffer: 50 mM MOPS-NaOH, 230 mM NaCl, pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III on 2021 Nov 8
Controlled modulation of the dynamics of the Deinococcus grandis Dps N-terminal tails by divalent metals. Protein Sci :e4567 (2023)
Guerra JPL, Blanchet CE, Vieira BJC, Waerenborgh JC, Jones NC, Hoffmann SV, Pereira AS, Tavares P
RgGuinier 4.4 nm
Dmax 19.1 nm
VolumePorod 412 nm3

SASDQ55DNA-binding protein from starved cells: DgrDps-D43A mutant + 48 Zn2+ in 50 mM MOPS pH 7.0, 230 mM NaCl

DNA protection during starvation, DPS-D43A (Ferritin superfamily) dodecamer D43A mutation experimental SAS data
GASBOR model
Sample: DNA protection during starvation, DPS-D43A (Ferritin superfamily) dodecamer D43A mutation dodecamer, 270 kDa Deinococcus grandis protein
Buffer: 50 mM MOPS-NaOH, 230 mM NaCl, pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III on 2021 Nov 8
Controlled modulation of the dynamics of the Deinococcus grandis Dps N-terminal tails by divalent metals. Protein Sci :e4567 (2023)
Guerra JPL, Blanchet CE, Vieira BJC, Waerenborgh JC, Jones NC, Hoffmann SV, Pereira AS, Tavares P
RgGuinier 4.4 nm
Dmax 20.7 nm
VolumePorod 409 nm3

SASDQ65DNA-binding protein from starved cells: DgrDps-D43A mutant + 24 Co2+ in 50 mM MOPS pH 7.0, 230 mM NaCl

DNA protection during starvation, DPS-D43A (Ferritin superfamily) dodecamer D43A mutation experimental SAS data
GASBOR model
Sample: DNA protection during starvation, DPS-D43A (Ferritin superfamily) dodecamer D43A mutation dodecamer, 270 kDa Deinococcus grandis protein
Buffer: 50 mM MOPS-NaOH, 230 mM NaCl, pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III on 2021 Nov 8
Controlled modulation of the dynamics of the Deinococcus grandis Dps N-terminal tails by divalent metals. Protein Sci :e4567 (2023)
Guerra JPL, Blanchet CE, Vieira BJC, Waerenborgh JC, Jones NC, Hoffmann SV, Pereira AS, Tavares P
RgGuinier 4.5 nm
Dmax 20.6 nm
VolumePorod 404 nm3

SASDQ75DNA-binding protein from starved cells: DgrDps-D43A mutant + 24 Mn2+ in 50 mM MOPS pH 7.0, 230 mM NaCl

DNA protection during starvation, DPS-D43A (Ferritin superfamily) dodecamer D43A mutation experimental SAS data
GASBOR model
Sample: DNA protection during starvation, DPS-D43A (Ferritin superfamily) dodecamer D43A mutation dodecamer, 270 kDa Deinococcus grandis protein
Buffer: 50 mM MOPS-NaOH, 230 mM NaCl, pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III on 2021 Nov 8
Controlled modulation of the dynamics of the Deinococcus grandis Dps N-terminal tails by divalent metals. Protein Sci :e4567 (2023)
Guerra JPL, Blanchet CE, Vieira BJC, Waerenborgh JC, Jones NC, Hoffmann SV, Pereira AS, Tavares P
RgGuinier 4.5 nm
Dmax 19.5 nm
VolumePorod 431 nm3

SASDMA5 – ...protein (a peptide of the DNA binding domain of CRX)

Cone-rod homeobox protein experimental SAS data
OTHER model
Sample: ...protein monomer, 7 kDa Homo sapiens protein
Buffer: 50 mM sodium phosphate,100 mM NaCl, and 5 mM imidazole, pH: 7
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2021 Jun 15
Structural and functional analysis of the human Cone-rod homeobox transcription factor. Proteins (2022)
Clanor PB, Buchholz C, Hayes JE, Friedman MA, White AM, Enke RA, Berndsen CE
RgGuinier 1.2 nm
Dmax 4.0 nm
VolumePorod 10 nm3

SASDQF5 – ...protein 410 (ZNF410 full length)

Zinc finger protein 410 experimental SAS data
BILBOMD model
Sample: ...protein 410 monomer, 52 kDa Homo sapiens protein
Buffer: 20 mM Tris, 250 mM NaCl, 0.1% v/v β-mercaptoethanol, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2020 Sep 30
...protein domain: a biophysical study of ZNF410-DNA interaction using small angle X-ray scattering. Nucleic Acids Res (2023)
Kaur G, Ren R, Hammel M, Horton JR, Yang J, Cao Y, He C, Lan F, Lan X, Blobel GA, Blumenthal RM, Zhang X, Cheng X
RgGuinier 3.6 nm
Dmax 12.3 nm
VolumePorod 108 nm3

SASDQG5 – ...protein 410 recognition sequence)

DNA (Zinc finger protein 410 recognition sequence) experimental SAS data
DNA (Zinc finger protein 410 recognition sequence) Kratky plot
Sample: ...protein 410 recognition sequence) monomer, 11 kDa DNA
Buffer: 20 mM Tris, 250 mM NaCl, 0.1% v/v β-mercaptoethanol, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2020 Sep 30
...protein domain: a biophysical study of ZNF410-DNA interaction using small angle X-ray scattering. Nucleic Acids Res (2023)
Kaur G, Ren R, Hammel M, Horton JR, Yang J, Cao Y, He C, Lan F, Lan X, Blobel GA, Blumenthal RM, Zhang X, Cheng X
RgGuinier 1.8 nm
Dmax 5.8 nm
VolumePorod 16 nm3

SASDQH5 – ...protein 410 (ZNF410 full length) bound to DNA

Zinc finger protein 410DNA (Zinc finger protein 410 recognition sequence) experimental SAS data
BILBOMD model
Sample: ...protein 410 monomer, 52 kDa Homo sapiens protein
...protein 410 recognition sequence) monomer, 11 kDa DNA
Buffer: 20 mM Tris, 250 mM NaCl, 0.1% v/v β-mercaptoethanol, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2020 Sep 30
...protein domain: a biophysical study of ZNF410-DNA interaction using small angle X-ray scattering. Nucleic Acids Res (2023)
Kaur G, Ren R, Hammel M, Horton JR, Yang J, Cao Y, He C, Lan F, Lan X, Blobel GA, Blumenthal RM, Zhang X, Cheng X
RgGuinier 4.4 nm
Dmax 14.3 nm
VolumePorod 76 nm3

SASDQJ5 – ...protein 410 (ZNF410): N-terminal region with 1-5 zinc fingers

Zinc finger protein 410 experimental SAS data
BILBOMD model
Sample: ...protein 410 monomer, 40 kDa Homo sapiens protein
Buffer: 20 mM Tris, 250 mM NaCl, 0.1% v/v β-mercaptoethanol, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2020 Sep 30
...protein domain: a biophysical study of ZNF410-DNA interaction using small angle X-ray scattering. Nucleic Acids Res (2023)
Kaur G, Ren R, Hammel M, Horton JR, Yang J, Cao Y, He C, Lan F, Lan X, Blobel GA, Blumenthal RM, Zhang X, Cheng X
RgGuinier 3.2 nm
Dmax 10.7 nm
VolumePorod 78 nm3

SASDQK5 – ...protein 410 (ZNF410): N-terminal region with 1-5 zinc fingers bound to DNA

DNA (Zinc finger protein 410 recognition sequence)Zinc finger protein 410 experimental SAS data
BILBOMD model
Sample: ...protein 410 recognition sequence) monomer, 11 kDa DNA
...protein 410 monomer, 40 kDa Homo sapiens protein
Buffer: 20 mM Tris, 250 mM NaCl, 0.1% v/v β-mercaptoethanol, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2021 Apr 25
...protein domain: a biophysical study of ZNF410-DNA interaction using small angle X-ray scattering. Nucleic Acids Res (2023)
Kaur G, Ren R, Hammel M, Horton JR, Yang J, Cao Y, He C, Lan F, Lan X, Blobel GA, Blumenthal RM, Zhang X, Cheng X
RgGuinier 3.1 nm
Dmax 14.1 nm
VolumePorod 63 nm3

SASDQL5 – ...protein 410 (ZNF410): C-terminal region with 1-5 zinc fingers

Zinc finger protein 410 experimental SAS data
BILBOMD model
Sample: ...protein 410 monomer, 29 kDa Homo sapiens protein
Buffer: 20 mM Tris, 250 mM NaCl, 0.1% v/v β-mercaptoethanol, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2020 Sep 30
...protein domain: a biophysical study of ZNF410-DNA interaction using small angle X-ray scattering. Nucleic Acids Res (2023)
Kaur G, Ren R, Hammel M, Horton JR, Yang J, Cao Y, He C, Lan F, Lan X, Blobel GA, Blumenthal RM, Zhang X, Cheng X
RgGuinier 3.0 nm
Dmax 9.6 nm
VolumePorod 58 nm3

SASDQM5 – ...protein 410 (ZNF410): C-terminal region with 1-5 zinc fingers bound to DNA

DNA (Zinc finger protein 410 recognition sequence)Zinc finger protein 410 experimental SAS data
BILBOMD model
Sample: ...protein 410 recognition sequence) monomer, 11 kDa DNA
...protein 410 monomer, 29 kDa Homo sapiens protein
Buffer: 20 mM Tris, 250 mM NaCl, 0.1% v/v β-mercaptoethanol, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2020 Sep 30
...protein domain: a biophysical study of ZNF410-DNA interaction using small angle X-ray scattering. Nucleic Acids Res (2023)
Kaur G, Ren R, Hammel M, Horton JR, Yang J, Cao Y, He C, Lan F, Lan X, Blobel GA, Blumenthal RM, Zhang X, Cheng X
RgGuinier 3.1 nm
Dmax 11.9 nm
VolumePorod 52 nm3

SASDGS5 – MvaT (low salt data set)

MvaT(mutant) experimental SAS data
OTHER [STATIC IMAGE] model
Sample: MvaT(mutant) dimer, 28 kDa Pseudomonas aeruginosa protein
Buffer: 20 mM Bis-Tris 50 mM KCl, pH: 6
Experiment: SAXS data collected at BM29, ESRF on 2018 May 11
...proteins. Nucleic Acids Res (2020)
Qin L, Bdira FB, Sterckx YGJ, Volkov AN, Vreede J, Giachin G, van Schaik P, Ubbink M, Dame RT
RgGuinier 3.6 nm
Dmax 14.7 nm
VolumePorod 47 nm3

SASDGT5 – MvaT (high salt data set)

MvaT(mutant) experimental SAS data
OTHER [STATIC IMAGE] model
Sample: MvaT(mutant) dimer, 28 kDa Pseudomonas aeruginosa protein
Buffer: 20 mM Bis-Tris 300 mM KCl, pH: 6
Experiment: SAXS data collected at BM29, ESRF on 2018 May 11
...proteins. Nucleic Acids Res (2020)
Qin L, Bdira FB, Sterckx YGJ, Volkov AN, Vreede J, Giachin G, van Schaik P, Ubbink M, Dame RT
RgGuinier 3.8 nm
Dmax 15.8 nm
VolumePorod 50 nm3

SASDCU6 – Chd1-12N12, chromatin remodeler--nucleosome complex, in 60% sucrose without any nucleotides added (Apo)

Chromodomain-helicase-DNA-binding protein 1169 bp DNA (145 bp Widom 601, flanked by 12bp DNA)Histone H2A type 1Histone H2B 1.1Histone H3.2Histone H4 experimental SAS data
Chd1-12N12, chromatin remodeler--nucleosome complex, in 60% sucrose without any nucleotides added (Apo) Rg histogram
Sample: ...DNA-binding protein 1 dimer, 266 kDa Saccharomyces cerevisiae protein
169 bp DNA (145 bp Widom 601, flanked by 12bp DNA) monomer, 52 kDa DNA
Histone H2A type 1 monomer, 14 kDa Xenopus laevis protein
Histone H2B 1.1 monomer, 14 kDa Xenopus laevis protein
Histone H3.2 monomer, 15 kDa Xenopus laevis protein
Histone H4 monomer, 11 kDa Xenopus laevis protein
Buffer: 10 mM Tris, 100 mM NaCl, 2 mM MgCl2, 0.1 mM EDTA, 1 mM DTT, 60% (w/v) sucrose, pH: 7.8
Experiment: SAXS data collected at G1, Cornell High Energy Synchrotron Source (CHESS) on 2015 Oct 24
The ATPase motor of the Chd1 chromatin remodeler stimulates DNA unwrapping from the nucleosome. Nucleic Acids Res 46(10):4978-4990 (2018)
Tokuda JM, Ren R, Levendosky RF, Tay RJ, Yan M, Pollack L, Bowman GD
RgGuinier 5.2 nm
Dmax 12.8 nm

SASDCV6 – Chd1-12N12, chromatin remodeler--nucleosome complex, in 60% sucrose with ADP-BeF3

Chromodomain-helicase-DNA-binding protein 1169 bp DNA (145 bp Widom 601, flanked by 12bp DNA)Histone H2A type 1Histone H2B 1.1Histone H3.2Histone H4 experimental SAS data
Chd1-12N12, chromatin remodeler--nucleosome complex, in 60% sucrose with ADP-BeF3 Rg histogram
Sample: ...DNA-binding protein 1 dimer, 266 kDa Saccharomyces cerevisiae protein
169 bp DNA (145 bp Widom 601, flanked by 12bp DNA) monomer, 52 kDa DNA
Histone H2A type 1 monomer, 14 kDa Xenopus laevis protein
Histone H2B 1.1 monomer, 14 kDa Xenopus laevis protein
Histone H3.2 monomer, 15 kDa Xenopus laevis protein
Histone H4 monomer, 11 kDa Xenopus laevis protein
Buffer: 10 mM Tris, 100 mM NaCl, 2 mM MgCl2, 0.1 mM EDTA, 1 mM DTT, 60% (w/v) sucrose, ADP-BeF3 (0.5 mM ADP, 4 mM NaF, 0.6 mM BeCl2), pH: 7.8
Experiment: SAXS data collected at G1, Cornell High Energy Synchrotron Source (CHESS) on 2015 Oct 24
The ATPase motor of the Chd1 chromatin remodeler stimulates DNA unwrapping from the nucleosome. Nucleic Acids Res 46(10):4978-4990 (2018)
Tokuda JM, Ren R, Levendosky RF, Tay RJ, Yan M, Pollack L, Bowman GD
RgGuinier 5.3 nm
Dmax 16.5 nm

SASDFV6DNA-binding protein HU-alpha, E38K/V42L double mutant

DNA-binding protein HU-alpha, E38K/V42L double mutant experimental SAS data
CHIMERA model
Sample: DNA-binding protein HU-alpha, E38K/V42L double mutant decamer, 95 kDa Escherichia coli protein
Buffer: 50 mM Tris-HCl, 150 mM NaCl, 1 mM DTT, 1 mM PMSF, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2015 Apr 23
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling (supplementary)
Soumya G Remesh
RgGuinier 3.0 nm
Dmax 10.5 nm
VolumePorod 53 nm3

SASDCW6 – Chd1-12N12, chromatin remodeler--nucleosome complex, in 60% sucrose with AMP-PNP

Chromodomain-helicase-DNA-binding protein 1169 bp DNA (145 bp Widom 601, flanked by 12bp DNA)Histone H2A type 1Histone H2B 1.1Histone H3.2Histone H4 experimental SAS data
Chd1-12N12, chromatin remodeler--nucleosome complex, in 60% sucrose with AMP-PNP Rg histogram
Sample: ...DNA-binding protein 1 dimer, 266 kDa Saccharomyces cerevisiae protein
169 bp DNA (145 bp Widom 601, flanked by 12bp DNA) monomer, 52 kDa DNA
Histone H2A type 1 monomer, 14 kDa Xenopus laevis protein
Histone H2B 1.1 monomer, 14 kDa Xenopus laevis protein
Histone H3.2 monomer, 15 kDa Xenopus laevis protein
Histone H4 monomer, 11 kDa Xenopus laevis protein
Buffer: 10 mM Tris, 100 mM NaCl, 2 mM MgCl2, 0.1 mM EDTA, 1 mM DTT, 60% (w/v) sucrose, 0.5 mM AMP-PNP, pH: 7.8
Experiment: SAXS data collected at G1, Cornell High Energy Synchrotron Source (CHESS) on 2015 Oct 24
The ATPase motor of the Chd1 chromatin remodeler stimulates DNA unwrapping from the nucleosome. Nucleic Acids Res 46(10):4978-4990 (2018)
Tokuda JM, Ren R, Levendosky RF, Tay RJ, Yan M, Pollack L, Bowman GD
RgGuinier 5.6 nm
Dmax 16.7 nm

SASDFW6DNA-binding protein HU-alpha, E38K/V42L double mutant bound to 80 bp DNA (ratio DNA:Protein 1:2)

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha, E38K/V42L double mutant experimental SAS data
CHIMERA model
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha, E38K/V42L double mutant tetramer, 38 kDa Escherichia coli protein
Buffer: 50 mM Tris-HCl, 150 mM NaCl, 1 mM DTT, 1 mM PMSF, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2015 Apr 23
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling (supplementary)
Soumya G Remesh
RgGuinier 5.7 nm
Dmax 31.3 nm
VolumePorod 297 nm3

SASDFX6DNA-binding protein HU-alpha, E38K/V42L double mutant bound to 80 bp DNA (ratio DNA:Protein 1:4)

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha, E38K/V42L double mutant experimental SAS data
CHIMERA model
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha, E38K/V42L double mutant tetramer, 38 kDa Escherichia coli protein
Buffer: 50 mM Tris-HCl, 150 mM NaCl, 1 mM DTT, 1 mM PMSF, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2015 Apr 23
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling (supplementary)
Soumya G Remesh
RgGuinier 5.7 nm
Dmax 25.7 nm
VolumePorod 195 nm3

SASDFY6DNA-binding protein HU-alpha, E38K/V42L double mutant bound to 80 bp DNA (ratio DNA:Protein 1:8)

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha, E38K/V42L double mutant experimental SAS data
CHIMERA model
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha, E38K/V42L double mutant octamer, 76 kDa Escherichia coli protein
Buffer: 50 mM Tris-HCl, 150 mM NaCl, 1 mM DTT, 1 mM PMSF, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2015 Apr 23
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling (supplementary)
Soumya G Remesh
RgGuinier 5.8 nm
Dmax 28.1 nm
VolumePorod 296 nm3

SASDFZ6DNA-binding protein HU-alpha, E38K/V42L double mutant bound to 80 bp DNA (ratio DNA:Protein 1:16)

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha, E38K/V42L double mutant experimental SAS data
CHIMERA model
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha, E38K/V42L double mutant 16-mer, 153 kDa Linked to wild-type … protein
Buffer: 50 mM Tris-HCl, 150 mM NaCl, 1 mM DTT, 1 mM PMSF, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2015 Apr 23
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling (supplementary)
Soumya G Remesh
RgGuinier 6.3 nm
Dmax 27.3 nm
VolumePorod 401 nm3

SASDBU7 – ...protein 1 (Chd1: 1009-1274)

chromodomain helicase DNA binding domain experimental SAS data
GASBOR model
Sample: chromodomain helicase DNA binding domain monomer, 31 kDa Saccharomyces cerevisiae protein
Buffer: 50mM Hepes 150mM NaCl, pH: 7.5
Experiment: SAXS data collected at EMBL X33, DORIS III, DESY on 2009 Nov 20
Structural reorganization of the chromatin remodeling enzyme Chd1 upon engagement with nucleosomes. Elife 6 (2017)
Sundaramoorthy R, Hughes AL, Singh V, Wiechens N, Ryan DP, El-Mkami H, Petoukhov M, Svergun DI, Treutlein B, Quack S, Fischer M, Michaelis J, Böttcher B, Norman DG, Owen-Hughes T
RgGuinier 2.6 nm
Dmax 8.3 nm

SASDBV7 – ...protein 1 (Chd1: 133-1305)

chromodomain helicase DNA binding domain experimental SAS data
GASBOR model
Sample: chromodomain helicase DNA binding domain monomer, 135 kDa Saccharomyces cerevisiae protein
Buffer: 50mM Hepes 150mM NaCl, pH: 7.5
Experiment: SAXS data collected at EMBL P12, PETRA III on 2008 Nov 30
Structural reorganization of the chromatin remodeling enzyme Chd1 upon engagement with nucleosomes. Elife 6 (2017)
Sundaramoorthy R, Hughes AL, Singh V, Wiechens N, Ryan DP, El-Mkami H, Petoukhov M, Svergun DI, Treutlein B, Quack S, Fischer M, Michaelis J, Böttcher B, Norman DG, Owen-Hughes T
RgGuinier 4.2 nm
Dmax 15.4 nm
VolumePorod 280 nm3

SASDMV7 – ...protein (SFPQ214-598(R542C)/NONO53-312)

Splicing factor, proline- and glutamine-richNon-POU domain-containing octamer-binding protein experimental SAS data
PDB (PROTEIN DATA BANK) model
Sample: Splicing factor, proline- and glutamine-rich dimer, 89 kDa Homo sapiens protein
...protein dimer, 60 kDa Homo sapiens protein
Buffer: 20 mM Tris pH 7.5, 250 mM NaCl, pH: 7.5
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2019 Jun 18
SFPQ214-598(R542C)/NONO53-312 and the SFPQ276-565/NONO53-312 concentration dependent dimer-tetramer transition
Heidar Koning
RgGuinier 5.5 nm
Dmax 20.4 nm
VolumePorod 304 nm3

SASDBW7 – ...protein 1 (Chd1: 1-1305)

chromodomain helicase DNA binding domain experimental SAS data
GASBOR model
Sample: chromodomain helicase DNA binding domain monomer, 150 kDa Saccharomyces cerevisiae protein
Buffer: 50mM Hepes 150mM NaCl, pH: 7.5
Experiment: SAXS data collected at EMBL X33, DORIS III, DESY on 2008 Nov 30
Structural reorganization of the chromatin remodeling enzyme Chd1 upon engagement with nucleosomes. Elife 6 (2017)
Sundaramoorthy R, Hughes AL, Singh V, Wiechens N, Ryan DP, El-Mkami H, Petoukhov M, Svergun DI, Treutlein B, Quack S, Fischer M, Michaelis J, Böttcher B, Norman DG, Owen-Hughes T
RgGuinier 4.9 nm
Dmax 16.0 nm
VolumePorod 340 nm3

SASDBX7 – ...protein 1 (Chd1: 133-1010)

chromodomain helicase DNA binding domain experimental SAS data
GASBOR model
Sample: chromodomain helicase DNA binding domain monomer, 102 kDa Saccharomyces cerevisiae protein
Buffer: 50mM Hepes 150mM NaCl, pH: 7.5
Experiment: SAXS data collected at EMBL X33, DORIS III, DESY on 2008 Nov 30
Structural reorganization of the chromatin remodeling enzyme Chd1 upon engagement with nucleosomes. Elife 6 (2017)
Sundaramoorthy R, Hughes AL, Singh V, Wiechens N, Ryan DP, El-Mkami H, Petoukhov M, Svergun DI, Treutlein B, Quack S, Fischer M, Michaelis J, Böttcher B, Norman DG, Owen-Hughes T
RgGuinier 4.1 nm
Dmax 16.1 nm
VolumePorod 190 nm3

SASDBY7 – ...protein 1 (Chd1: 1-1010)

chromodomain helicase DNA binding domain experimental SAS data
GASBOR model
Sample: chromodomain helicase DNA binding domain monomer, 117 kDa Saccharomyces cerevisiae protein
Buffer: 50mM Hepes 150mM NaCl, pH: 7.5
Experiment: SAXS data collected at EMBL X33, DORIS III, DESY on 2008 Nov 30
Structural reorganization of the chromatin remodeling enzyme Chd1 upon engagement with nucleosomes. Elife 6 (2017)
Sundaramoorthy R, Hughes AL, Singh V, Wiechens N, Ryan DP, El-Mkami H, Petoukhov M, Svergun DI, Treutlein B, Quack S, Fischer M, Michaelis J, Böttcher B, Norman DG, Owen-Hughes T
RgGuinier 4.5 nm
Dmax 12.0 nm
VolumePorod 228 nm3

SASDNY7DNA-binding protein from starved cells: DgrDpsWT in 50 mM MOPS, 50 mM NaCl pH 7.0

DNA protection during starvation, DPS (Ferritin superfamily) experimental SAS data
GASBOR model
Sample: DNA protection during starvation, DPS (Ferritin superfamily) dodecamer, 270 kDa Deinococcus grandis protein
Buffer: 50 mM MOPS-NaOH, 50 mM NaCl, pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III on 2020 Oct 22
The Conformation of the N-Terminal Tails of Deinococcus grandis Dps Is Modulated by the Ionic Strength International Journal of Molecular Sciences 23(9):4871 (2022)
Guerra J, Blanchet C, Vieira B, Almeida A, Waerenborgh J, Jones N, Hoffmann S, Tavares P, Pereira A
RgGuinier 4.4 nm
Dmax 16.1 nm
VolumePorod 409 nm3

SASDNZ7DNA-binding protein from starved cells: DgrDpsWT in 50 mM MOPS, 80 mM NaCl pH 7.0

DNA protection during starvation, DPS (Ferritin superfamily) experimental SAS data
GASBOR model
Sample: DNA protection during starvation, DPS (Ferritin superfamily) dodecamer, 270 kDa Deinococcus grandis protein
Buffer: 50 mM MOPS-NaOH, 80 mM NaCl, pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III on 2020 Oct 22
The Conformation of the N-Terminal Tails of Deinococcus grandis Dps Is Modulated by the Ionic Strength International Journal of Molecular Sciences 23(9):4871 (2022)
Guerra J, Blanchet C, Vieira B, Almeida A, Waerenborgh J, Jones N, Hoffmann S, Tavares P, Pereira A
RgGuinier 4.5 nm
Dmax 17.1 nm
VolumePorod 475 nm3

SASDN28DNA-binding protein from starved cells: DgrDpsWT in 50 mM MOPS, 230 mM NaCl pH 7.0

DNA protection during starvation, DPS (Ferritin superfamily) experimental SAS data
GASBOR model
Sample: DNA protection during starvation, DPS (Ferritin superfamily) dodecamer, 270 kDa Deinococcus grandis protein
Buffer: 50 mM MOPS-NaOH, 230 mM NaCl, pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III on 2020 Oct 22
The Conformation of the N-Terminal Tails of Deinococcus grandis Dps Is Modulated by the Ionic Strength International Journal of Molecular Sciences 23(9):4871 (2022)
Guerra J, Blanchet C, Vieira B, Almeida A, Waerenborgh J, Jones N, Hoffmann S, Tavares P, Pereira A
RgGuinier 4.5 nm
Dmax 20.6 nm
VolumePorod 438 nm3

SASDN38DNA-binding protein from starved cells: DgrDpsWT in 50 mM MOPS, 480 mM NaCl pH 7.0

DNA protection during starvation, DPS (Ferritin superfamily) experimental SAS data
GASBOR model
Sample: DNA protection during starvation, DPS (Ferritin superfamily) dodecamer, 270 kDa Deinococcus grandis protein
Buffer: 50 mM MOPS-NaOH, 480 mM NaCl, pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III on 2020 Oct 22
The Conformation of the N-Terminal Tails of Deinococcus grandis Dps Is Modulated by the Ionic Strength International Journal of Molecular Sciences 23(9):4871 (2022)
Guerra J, Blanchet C, Vieira B, Almeida A, Waerenborgh J, Jones N, Hoffmann S, Tavares P, Pereira A
RgGuinier 4.8 nm
Dmax 20.5 nm
VolumePorod 430 nm3

SASDN48DNA-binding protein from starved cells (tailless): DgrDps∆N in 50 mM MOPS, 50 mM NaCl pH 7.0

DNA protection during starvation, DPS-∆N (Ferritin superfamily) experimental SAS data
DAMMIN model
Sample: DNA protection during starvation, DPS-∆N (Ferritin superfamily) dodecamer, 218 kDa Deinococcus grandis protein
Buffer: 50 mM MOPS-NaOH, 50 mM NaCl, pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III on 2020 Oct 22
The Conformation of the N-Terminal Tails of Deinococcus grandis Dps Is Modulated by the Ionic Strength International Journal of Molecular Sciences 23(9):4871 (2022)
Guerra J, Blanchet C, Vieira B, Almeida A, Waerenborgh J, Jones N, Hoffmann S, Tavares P, Pereira A
RgGuinier 3.8 nm
Dmax 9.3 nm
VolumePorod 290 nm3

SASDN58DNA-binding protein from starved cells (tailless): DgrDps∆N in 50 mM MOPS, 230 mM NaCl pH 7.0

DNA protection during starvation, DPS-∆N (Ferritin superfamily) experimental SAS data
DAMMIN model
Sample: DNA protection during starvation, DPS-∆N (Ferritin superfamily) dodecamer, 218 kDa Deinococcus grandis protein
Buffer: 50 mM MOPS-NaOH, 230 mM NaCl, pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III on 2020 Oct 22
The Conformation of the N-Terminal Tails of Deinococcus grandis Dps Is Modulated by the Ionic Strength International Journal of Molecular Sciences 23(9):4871 (2022)
Guerra J, Blanchet C, Vieira B, Almeida A, Waerenborgh J, Jones N, Hoffmann S, Tavares P, Pereira A
RgGuinier 3.8 nm
Dmax 8.8 nm
VolumePorod 291 nm3

SASDD89 – Structure of Halobacterium salinarum VNG0258H/RosR in the presence of 2 M KCl

VNG0258H/RosR experimental SAS data
DAMMIN model
Sample: VNG0258H/RosR dimer, 29 kDa Halobacterium salinarum NRC-1 protein
Buffer: 50 mM HEPES, 2 M KCl, 0.02% NaN3, pH: 7
Experiment: SAXS data collected at BM29, ESRF on 2015 Mar 7
...DNA-binding protein in its ionic shell. J Struct Biol (2018)
Kutnowski N, Shmuely H, Dahan I, Shmulevich F, Davidov G, Shahar A, Eichler J, Zarivach R, Shaanan B
RgGuinier 2.3 nm
Dmax 7.5 nm
VolumePorod 58 nm3

SASDD99 – Structure of Halobacterium salinarum VNG0258H/RosR in the presence of 2 M NaCl

VNG0258H/RosR experimental SAS data
DAMMIN model
Sample: VNG0258H/RosR dimer, 29 kDa Halobacterium salinarum NRC-1 protein
Buffer: 50 mM HEPES, 2 M NaCl, 0.02% NaN3, pH: 7
Experiment: SAXS data collected at BM29, ESRF on 2015 Mar 7
...DNA-binding protein in its ionic shell. J Struct Biol (2018)
Kutnowski N, Shmuely H, Dahan I, Shmulevich F, Davidov G, Shahar A, Eichler J, Zarivach R, Shaanan B
RgGuinier 2.4 nm
Dmax 7.7 nm
VolumePorod 63 nm3

SASDDA9 – Structure of Halobacterium salinarum VNG0258H/RosR in the presence of 2 M KBr

VNG0258H/RosR experimental SAS data
DAMMIN model
Sample: VNG0258H/RosR dimer, 29 kDa Halobacterium salinarum NRC-1 protein
Buffer: 50 mM HEPES, 2 M KBr, 0.02% NaN3, pH: 7
Experiment: SAXS data collected at BM29, ESRF on 2015 Mar 7
...DNA-binding protein in its ionic shell. J Struct Biol (2018)
Kutnowski N, Shmuely H, Dahan I, Shmulevich F, Davidov G, Shahar A, Eichler J, Zarivach R, Shaanan B
RgGuinier 2.3 nm
Dmax 7.7 nm
VolumePorod 46 nm3

SASDDB9 – Structure of Halobacterium salinarum VNG0258H/RosR in the presence of 2 M NaBr

VNG0258H/RosR experimental SAS data
DAMMIN model
Sample: VNG0258H/RosR dimer, 29 kDa Halobacterium salinarum NRC-1 protein
Buffer: 50 mM HEPES, 2 M NaBr, 0.02% NaN3, pH: 7
Experiment: SAXS data collected at BM29, ESRF on 2015 Sep 26
...DNA-binding protein in its ionic shell. J Struct Biol (2018)
Kutnowski N, Shmuely H, Dahan I, Shmulevich F, Davidov G, Shahar A, Eichler J, Zarivach R, Shaanan B
RgGuinier 2.5 nm
Dmax 8.1 nm
VolumePorod 59 nm3

SASDDC9 – Structure of Halobacterium salinarum VNG0258H/RosR in the presence of 2 M RbCl

VNG0258H/RosR experimental SAS data
DAMMIN model
Sample: VNG0258H/RosR dimer, 29 kDa Halobacterium salinarum NRC-1 protein
Buffer: 50 mM HEPES, 2 M RbCl, 0.02% NaN3, pH: 7
Experiment: SAXS data collected at BM29, ESRF on 2015 Mar 7
...DNA-binding protein in its ionic shell. J Struct Biol (2018)
Kutnowski N, Shmuely H, Dahan I, Shmulevich F, Davidov G, Shahar A, Eichler J, Zarivach R, Shaanan B
RgGuinier 3.3 nm
Dmax 9.3 nm
VolumePorod 89 nm3

SASDBL9 – ...protein YeeF-CT from Bacillus subtilis (amino acids 528-669)

Putative DNA binding protein experimental SAS data
DAMMIN model
Sample: ...protein dimer, 37 kDa Bacillus subtilis subsp. … protein
Buffer: 20 mM HEPES 150 mM NaCl, pH: 7.5
Experiment: SAXS data collected at Anton Paar SAXSpace, CSIR - Institute of Microbial Technology (IMTech) on 2016 Aug 17
YeeF, a polymorphic toxin from Bacillus subtilis, is a ribosomal RNase with promiscuous DNA binding property
Krishan Gopal
RgGuinier 2.7 nm
Dmax 9.5 nm
VolumePorod 55 nm3

SASDBN9 – ...protein YeeF-CT in complex with the cognate immunity protein YezG from Bacillus subtilis

Putative DNA binding proteinYezG, cognate  immunity protein  of YeeF experimental SAS data
DAMMIN model
Sample: ...protein dimer, 37 kDa Bacillus subtilis subsp. … protein
...protein of YeeF monomer, 19 kDa Bacillus subtilis subsp. … protein
Buffer: 20 mM HEPES 150 mM NaCl, pH: 7.5
Experiment: SAXS data collected at Anton Paar SAXSpace, CSIR - Institute of Microbial Technology (IMTech) on 2016 Aug 18
YeeF, a polymorphic toxin from Bacillus subtilis, is a ribosomal RNase with promiscuous DNA binding property
Krishan Gopal
RgGuinier 4.0 nm
Dmax 14.1 nm
VolumePorod 115 nm3

SASDFR6DNA-binding protein HU-alpha, E34K mutant bound to 80 bp DNA (ratio DNA:Protein 1:1)

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha, E34K experimental SAS data
CHIMERA model
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha, E34K , 228 kDa Escherichia coli protein
Buffer: 20mM HEPES, 100mM NaCl, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2016 Jul 8
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M
RgGuinier 6.1 nm
Dmax 21.9 nm
VolumePorod 251 nm3

SASDBG7 – ...protein under starvation conditions (SEC-SAXS)

DNA protection during starvation protein 1 experimental SAS data
GASBOR model
Sample: ...protein 1 dodecamer, 276 kDa Deinococcus radiodurans R1 protein
Buffer: 20 mM Tris-HCl, 150 mM NaCl, pH: 7.5
Experiment: SAXS data collected at BM29, ESRF on 2013 Nov 22
SAXS Structural Studies of Dps from Deinococcus radiodurans Highlights the Conformation of the Mobile N-Terminal Extensions. J Mol Biol 429(5):667-687 (2017)
Santos SP, Cuypers MG, Round A, Finet S, Narayanan T, Mitchell EP, Romão CV
RgGuinier 4.2 nm
Dmax 12.8 nm
VolumePorod 437 nm3

SASDFS6DNA-binding protein HU-alpha, E34K mutant bound to 80 bp DNA (ratio DNA:Protein 1:2.5)

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha, E34K experimental SAS data
CHIMERA model
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha, E34K , 267 kDa Escherichia coli protein
Buffer: 20mM HEPES, 100mM NaCl, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2016 Jul 8
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M
RgGuinier 7.0 nm
Dmax 25.0 nm
VolumePorod 386 nm3

SASDBH7 – ...protein under starvation conditions (SEC-SAXS)

N-terminal truncated DNA protection during starvation protein 1 experimental SAS data
GASBOR model
Sample: ...protein 1 dodecamer, 216 kDa Deinococcus radiodurans R1 protein
Buffer: 20 mM Tris-HCl, 150 mM NaCl, pH: 7.5
Experiment: SAXS data collected at BM29, ESRF on 2013 Nov 22
SAXS Structural Studies of Dps from Deinococcus radiodurans Highlights the Conformation of the Mobile N-Terminal Extensions. J Mol Biol 429(5):667-687 (2017)
Santos SP, Cuypers MG, Round A, Finet S, Narayanan T, Mitchell EP, Romão CV
RgGuinier 3.9 nm
Dmax 10.0 nm
VolumePorod 291 nm3

SASDFT6DNA-binding protein HU-alpha, E34K mutant bound to 80 bp DNA (ratio DNA:Protein 1:5)

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha, E34K experimental SAS data
CHIMERA model
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha, E34K , 267 kDa Escherichia coli protein
Buffer: 20mM HEPES, 100mM NaCl, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2016 Jul 8
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M
RgGuinier 7.2 nm
Dmax 27.0 nm
VolumePorod 474 nm3

SASDBF7 – ...protein under starvation conditions (SEC-SAXS)

N-terminal truncated DNA protection during starvation protein 2 experimental SAS data
EOM/RANCH model
Sample: ...protein 2 dodecamer, 279 kDa Deinococcus radiodurans R1 protein
Buffer: 20 mM Tris-HCl, 150 mM NaCl, pH: 7.5
Experiment: SAXS data collected at BM29, ESRF on 2013 Nov 22
SAXS Structural Studies of Dps from Deinococcus radiodurans Highlights the Conformation of the Mobile N-Terminal Extensions. J Mol Biol 429(5):667-687 (2017)
Santos SP, Cuypers MG, Round A, Finet S, Narayanan T, Mitchell EP, Romão CV
RgGuinier 4.2 nm
Dmax 12.7 nm
VolumePorod 445 nm3

SASDFU6DNA-binding protein HU-alpha, E34K mutant bound to 80 bp DNA (ratio DNA:Protein 1:10)

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha, E34K experimental SAS data
CHIMERA model
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha, E34K , 305 kDa Escherichia coli protein
Buffer: 20mM HEPES, 100mM NaCl, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2016 Jul 8
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M
RgGuinier 8.0 nm
Dmax 24.8 nm
VolumePorod 448 nm3

SASDFN6DNA-binding protein HU-alpha

DNA-binding protein HU-alpha experimental SAS data
CHIMERA model
Sample: DNA-binding protein HU-alpha octamer, 77 kDa Escherichia coli protein
Buffer: 10 mM Bis-Tris, 100 mM NaCl, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 May 27
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M
RgGuinier 3.2 nm
Dmax 10.7 nm

SASDF36DNA-binding protein HU-alpha bound to 80 base-pair DNA at pH 4.5 with 50 mM NaCl

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha experimental SAS data
80bp_DNA Forward 80bp_DNA Reverse DNA-binding protein HU-alpha Kratky plot
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha , 10 kDa Escherichia coli protein
Buffer: 10 mM sodium acetate, 50 mM NaCl, pH: 4.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 May 27
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M

SASDF46DNA-binding protein HU-alpha bound to 80 base-pair DNA at pH 4.5 with 100 mM NaCl

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha experimental SAS data
80bp_DNA Forward 80bp_DNA Reverse DNA-binding protein HU-alpha Kratky plot
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha , 10 kDa Escherichia coli protein
Buffer: 10 mM sodium acetate, 100 mM NaCl, pH: 4.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 Jun 1
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M

SASDF56DNA-binding protein HU-alpha bound to 80 base-pair DNA at pH 4.5 with 150 mM NaCl

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha experimental SAS data
80bp_DNA Forward 80bp_DNA Reverse DNA-binding protein HU-alpha Kratky plot
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha , 10 kDa Escherichia coli protein
Buffer: 10 mM sodium acetate, 150 mM NaCl, pH: 4.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 Jun 1
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M

SASDF66DNA-binding protein HU-alpha bound to 80 base-pair DNA at pH 4.5 with 300 mM NaCl

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha experimental SAS data
80bp_DNA Forward 80bp_DNA Reverse DNA-binding protein HU-alpha Kratky plot
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha , 10 kDa Escherichia coli protein
Buffer: 10 mM sodium acetate, 300 mM NaCl, pH: 4.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 Jun 1
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M

SASDFX5DNA-binding protein HU-alpha bound to 80 base-pair DNA at pH 5.5 with 50 mM NaCl

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha experimental SAS data
80bp_DNA Forward 80bp_DNA Reverse DNA-binding protein HU-alpha Kratky plot
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha , 10 kDa Escherichia coli protein
Buffer: 10 mM Bis-Tris, 50 mM NaCl, pH: 5.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 May 27
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M

SASDFY5DNA-binding protein HU-alpha bound to 80 base-pair DNA at pH 5.5 with 100 mM NaCl

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha experimental SAS data
80bp_DNA Forward 80bp_DNA Reverse DNA-binding protein HU-alpha Kratky plot
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha , 10 kDa Escherichia coli protein
Buffer: 10 mM Bis-Tris, 100 mM NaCl, pH: 5.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 May 27
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M

SASDFZ5DNA-binding protein HU-alpha bound to 80 base-pair DNA at pH 5.5 with 150 mM NaCl

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha experimental SAS data
80bp_DNA Forward 80bp_DNA Reverse DNA-binding protein HU-alpha Kratky plot
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha , 10 kDa Escherichia coli protein
Buffer: 10 mM Bis-Tris, 150 mM NaCl, pH: 5.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 May 27
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M

SASDF26DNA-binding protein HU-alpha bound to 80 base-pair DNA at pH 5.5 with 300 mM NaCl

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha experimental SAS data
CHIMERA model
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha decamer, 95 kDa Escherichia coli protein
Buffer: 10 mM Bis-Tris, 300 mM NaCl, pH: 5.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 May 27
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M
RgGuinier 6.4 nm
Dmax 24.4 nm
VolumePorod 268 nm3

SASDFT5DNA-binding protein HU-alpha bound to 80 base-pair DNA at pH 6.5 with 50 mM NaCl

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha experimental SAS data
80bp_DNA Forward 80bp_DNA Reverse DNA-binding protein HU-alpha Kratky plot
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha , 10 kDa Escherichia coli protein
Buffer: 10mM Bis-Tris, 50 mM NaCl, pH: 6.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 May 27
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M

SASDFU5DNA-binding protein HU-alpha bound to 80 base-pair DNA at pH 6.5 with 100 mM NaCl

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha experimental SAS data
CHIMERA model
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha 14-mer, 133 kDa Escherichia coli protein
Buffer: 10 mM Bis-Tris, 100 mM NaCl, pH: 6.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 Jun 1
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M
RgGuinier 6.2 nm
Dmax 24.4 nm
VolumePorod 274 nm3

SASDFV5DNA-binding protein HU-alpha bound to 80 base-pair DNA at pH 6.5 with 150 mM NaCl

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha experimental SAS data
CHIMERA model
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha 14-mer, 133 kDa Escherichia coli protein
Buffer: 10 mM Bis-Tris, 150 mM NaCl, pH: 6.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 Jun 1
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M
RgGuinier 7.0 nm
Dmax 26.2 nm
VolumePorod 352 nm3

SASDFW5DNA-binding protein HU-alpha bound to 80 base-pair DNA at pH 6.5 with 300 mM NaCl

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha experimental SAS data
CHIMERA model
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha decamer, 95 kDa Escherichia coli protein
Buffer: 10 mM Bis-Tris, 300 mM NaCl, pH: 6.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 Jun 1
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M
RgGuinier 6.0 nm
Dmax 24.7 nm
VolumePorod 218 nm3

SASDFP5DNA-binding protein HU-alpha bound to 80 base-pair DNA at pH 7.5 with 50 mM NaCl

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha experimental SAS data
CHIMERA model
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha 16-mer, 153 kDa Escherichia coli protein
Buffer: 10 mM Bis-Tris, 50 mM NaCl, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 May 27
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M
RgGuinier 8.9 nm
Dmax 28.5 nm
VolumePorod 410 nm3

SASDFQ5DNA-binding protein HU-alpha bound to 80 base-pair DNA at pH 7.5 with 100 mM NaCl

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha experimental SAS data
CHIMERA model
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha 16-mer, 153 kDa Escherichia coli protein
Buffer: 10 mM Bis-Tris, 100 mM NaCl, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 Jun 1
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M
RgGuinier 6.6 nm
Dmax 25.0 nm
VolumePorod 336 nm3

SASDFR5DNA-binding protein HU-alpha bound to 80 base-pair DNA at pH 7.5 with 150 mM NaCl

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha experimental SAS data
CHIMERA model
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha 14-mer, 133 kDa Escherichia coli protein
Buffer: 10 mM Bis-Tris, 150 mM NaCl, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 Jun 1
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M
RgGuinier 5.8 nm
Dmax 24.2 nm
VolumePorod 308 nm3

SASDFS5DNA-binding protein HU-alpha bound to 80 base-pair DNA at pH 7.5 with 300 mM NaCl

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha experimental SAS data
CHIMERA model
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha decamer, 95 kDa Escherichia coli protein
Buffer: 10 mM Bis-Tris, 300 mM NaCl, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 Jun 1
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M
RgGuinier 6.5 nm
Dmax 24.0 nm
VolumePorod 242 nm3

SASDFQ6DNA-binding protein HU-alpha, E34K

DNA-binding protein HU-alpha, E34K experimental SAS data
CHIMERA model
Sample: DNA-binding protein HU-alpha, E34K dimer, 19 kDa Escherichia coli protein
Buffer: 10 mM Bis-Tris, 100 mM NaCl, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 Jun 1
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M
RgGuinier 2.2 nm
Dmax 6.7 nm
VolumePorod 36 nm3

SASDGB3DNA-binding protein HU-alpha, E34K mutant bound to 80 bp DNA (pH 4.5)

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha, E34K experimental SAS data
80bp_DNA Forward 80bp_DNA Reverse DNA-binding protein HU-alpha, E34K Kratky plot
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha, E34K dimer, 19 kDa Escherichia coli protein
Buffer: 10 mM sodium acetate, 50 mM NaCl, pH: 4.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 Nov 2
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M

SASDGC3DNA-binding protein HU-alpha, E34K mutant bound to 80 bp DNA (pH 5.5)

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha, E34K experimental SAS data
80bp_DNA Forward 80bp_DNA Reverse DNA-binding protein HU-alpha, E34K Kratky plot
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha, E34K dimer, 19 kDa Escherichia coli protein
Buffer: 10 mM Bis-Tris, 50 mM NaCl, pH: 5.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 Nov 2
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M

SASDGD3DNA-binding protein HU-alpha, E34K mutant bound to 80 bp DNA (pH 6.5)

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha, E34K experimental SAS data
80bp_DNA Forward 80bp_DNA Reverse DNA-binding protein HU-alpha, E34K Kratky plot
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha, E34K , 100 kDa Escherichia coli protein
Buffer: 10mM Bis-Tris, 50 mM NaCl, pH: 6.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 Nov 2
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M
RgGuinier 7.3 nm
Dmax 28.0 nm
VolumePorod 330 nm3

SASDGE3DNA-binding protein HU-alpha, E34K mutant bound to 80 bp DNA (pH 7.5)

80bp_DNA Forward80bp_DNA ReverseDNA-binding protein HU-alpha, E34K experimental SAS data
80bp_DNA Forward 80bp_DNA Reverse DNA-binding protein HU-alpha, E34K Kratky plot
Sample: 80bp_DNA Forward monomer, 25 kDa Escherichia coli DNA
80bp_DNA Reverse monomer, 25 kDa Escherichia coli DNA
DNA-binding protein HU-alpha, E34K , 100 kDa Escherichia coli protein
Buffer: 10 mM Bis-Tris, 50 mM NaCl, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2018 Nov 2
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 11(1):2905 (2020)
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M
RgGuinier 7.1 nm
Dmax 27.5 nm
VolumePorod 309 nm3