Search

 
Advanced search  

89 hits found for idp

SASDC62 – Basic domain of telomeric repeat-binding factor 2 (TRF2)

Basic domain of telomeric repeat-binding factor 2 experimental SAS data
Basic domain of telomeric repeat-binding factor 2 Kratky plot
Sample: Basic domain of telomeric repeat-binding factor 2 monomer, 5 kDa Homo sapiens protein
Buffer: 50 mM NaPi, 50 mM NaCl, pH: 7
Experiment: SAXS data collected at Rigaku BioSAXS-1000, CEITEC on 2015 Mar 5
Basic domain of telomere guardian TRF2 reduces D-loop unwinding whereas Rap1 restores it. Nucleic Acids Res 45(21):12170-12180 (2017)
Necasová I, Janoušková E, Klumpler T, Hofr C
RgGuinier 1.7 nm
Dmax 7.1 nm
VolumePorod 4 nm3

SASDD62 – Microtubule associated protein MAP2c (isoform 3); 12 mg/ml

Microtubule-associated protein 2, isoform 3 experimental SAS data
Microtubule-associated protein 2, isoform 3 Kratky plot
Sample: Microtubule-associated protein 2, isoform 3 monomer, 49 kDa Rattus norvegicus protein
Buffer: 50 mM MOPS, 150 mM NaCl, 0.03% NaN3, pH: 6.9
Experiment: SAXS data collected at BM29, ESRF on 2017 Apr 21
Functionally specific binding regions of microtubule-associated protein 2c exhibit distinct conformations and dynamics. J Biol Chem 293(34):13297-13309 (2018)
Melková K, Zapletal V, Jansen S, Nomilner E, Zachrdla M, Hritz J, Nováček J, Zweckstetter M, Jensen MR, Blackledge M, Žídek L
RgGuinier 8.3 nm

SASDD72 – Microtubule associated protein MAP2c (isoform 3); 6 mg/ml

Microtubule-associated protein 2, isoform 3 experimental SAS data
Microtubule-associated protein 2, isoform 3 Kratky plot
Sample: Microtubule-associated protein 2, isoform 3 monomer, 49 kDa Rattus norvegicus protein
Buffer: 50 mM MOPS, 150 mM NaCl, 0.03% NaN3, pH: 6.9
Experiment: SAXS data collected at BM29, ESRF on 2017 Apr 21
Functionally specific binding regions of microtubule-associated protein 2c exhibit distinct conformations and dynamics. J Biol Chem 293(34):13297-13309 (2018)
Melková K, Zapletal V, Jansen S, Nomilner E, Zachrdla M, Hritz J, Nováček J, Zweckstetter M, Jensen MR, Blackledge M, Žídek L
RgGuinier 7.9 nm

SASDD82 – Microtubule associated protein MAP2c (isoform 3); 3 mg/ml

Microtubule-associated protein 2, isoform 3 experimental SAS data
Microtubule-associated protein 2, isoform 3 Kratky plot
Sample: Microtubule-associated protein 2, isoform 3 monomer, 49 kDa Rattus norvegicus protein
Buffer: 50 mM MOPS, 150 mM NaCl, 0.03% NaN3, pH: 6.9
Experiment: SAXS data collected at BM29, ESRF on 2017 Apr 21
Functionally specific binding regions of microtubule-associated protein 2c exhibit distinct conformations and dynamics. J Biol Chem 293(34):13297-13309 (2018)
Melková K, Zapletal V, Jansen S, Nomilner E, Zachrdla M, Hritz J, Nováček J, Zweckstetter M, Jensen MR, Blackledge M, Žídek L
RgGuinier 6.9 nm

SASDD92 – Microtubule associated protein MAP2c (isoform 3); 1.5 mg/ml

Microtubule-associated protein 2, isoform 3 experimental SAS data
Microtubule-associated protein 2, isoform 3 Kratky plot
Sample: Microtubule-associated protein 2, isoform 3 monomer, 49 kDa Rattus norvegicus protein
Buffer: 50 mM MOPS, 150 mM NaCl, 0.03% NaN3, pH: 6.9
Experiment: SAXS data collected at BM29, ESRF on 2017 Apr 21
Functionally specific binding regions of microtubule-associated protein 2c exhibit distinct conformations and dynamics. J Biol Chem 293(34):13297-13309 (2018)
Melková K, Zapletal V, Jansen S, Nomilner E, Zachrdla M, Hritz J, Nováček J, Zweckstetter M, Jensen MR, Blackledge M, Žídek L
RgGuinier 6.7 nm

SASDDA2 – Phosphorylated Microtubule associated protein MAP2c (isoform 3); 13.6 mg/ml

Microtubule-associated protein 2, isoform 3 experimental SAS data
Microtubule-associated protein 2, isoform 3 Kratky plot
Sample: Microtubule-associated protein 2, isoform 3 monomer, 49 kDa Rattus norvegicus protein
Buffer: 50 mM MOPS, 150 mM NaCl, 0.03% NaN3, pH: 6.9
Experiment: SAXS data collected at BM29, ESRF on 2017 Apr 21
Functionally specific binding regions of microtubule-associated protein 2c exhibit distinct conformations and dynamics. J Biol Chem 293(34):13297-13309 (2018)
Melková K, Zapletal V, Jansen S, Nomilner E, Zachrdla M, Hritz J, Nováček J, Zweckstetter M, Jensen MR, Blackledge M, Žídek L
RgGuinier 7.9 nm

SASDLA2 – Mothers against decapentaplegic homolog 2, SMAD2 phosphomimetic mutant 0.5 mg/ml

Mothers against decapentaplegic homolog 2 (C-terminus phosphomimetic mutant) experimental SAS data
Mothers against decapentaplegic homolog 2 (C-terminus phosphomimetic mutant) Kratky plot
Sample: Mothers against decapentaplegic homolog 2 (C-terminus phosphomimetic mutant) , 53 kDa Homo sapiens protein
Buffer: 20 mM Tris, 150 mM NaCl, pH: 7.2
Experiment: SAXS data collected at BM29, ESRF on 2016 Apr 4
Conformational landscape of multidomain SMAD proteins Computational and Structural Biotechnology Journal (2021)
Gomes T, Martin-Malpartida P, Ruiz L, Aragón E, Cordeiro T, Macias M
RgGuinier 5.1 nm
Dmax 20.0 nm

SASDDB2 – Phosphorylated Microtubule associated protein MAP2c (isoform 3); 6.8 mg/ml

Microtubule-associated protein 2, isoform 3 experimental SAS data
Microtubule-associated protein 2, isoform 3 Kratky plot
Sample: Microtubule-associated protein 2, isoform 3 monomer, 49 kDa Rattus norvegicus protein
Buffer: 50 mM MOPS, 150 mM NaCl, 0.03% NaN3, pH: 6.9
Experiment: SAXS data collected at BM29, ESRF on 2017 Apr 21
Functionally specific binding regions of microtubule-associated protein 2c exhibit distinct conformations and dynamics. J Biol Chem 293(34):13297-13309 (2018)
Melková K, Zapletal V, Jansen S, Nomilner E, Zachrdla M, Hritz J, Nováček J, Zweckstetter M, Jensen MR, Blackledge M, Žídek L
RgGuinier 7.3 nm

SASDLB2 – Mothers against decapentaplegic homolog 2, SMAD2 phosphomimetic mutant 1 mg/ml

Mothers against decapentaplegic homolog 2 (C-terminus phosphomimetic mutant) experimental SAS data
Mothers against decapentaplegic homolog 2 (C-terminus phosphomimetic mutant) Kratky plot
Sample: Mothers against decapentaplegic homolog 2 (C-terminus phosphomimetic mutant) , 53 kDa Homo sapiens protein
Buffer: 20 mM Tris, 150 mM NaCl, pH: 7.2
Experiment: SAXS data collected at BM29, ESRF on 2016 Apr 4
Conformational landscape of multidomain SMAD proteins Computational and Structural Biotechnology Journal (2021)
Gomes T, Martin-Malpartida P, Ruiz L, Aragón E, Cordeiro T, Macias M
RgGuinier 5.2 nm
Dmax 20.0 nm

SASDDC2 – Phosphorylated Microtubule associated protein MAP2c (isoform 3); 1.7 mg/ml

Microtubule-associated protein 2, isoform 3 experimental SAS data
Microtubule-associated protein 2, isoform 3 Kratky plot
Sample: Microtubule-associated protein 2, isoform 3 monomer, 49 kDa Rattus norvegicus protein
Buffer: MOPS map2c buffer, pH: 6.9
Experiment: SAXS data collected at BM29, ESRF on 2017 Apr 21
Functionally specific binding regions of microtubule-associated protein 2c exhibit distinct conformations and dynamics. J Biol Chem 293(34):13297-13309 (2018)
Melková K, Zapletal V, Jansen S, Nomilner E, Zachrdla M, Hritz J, Nováček J, Zweckstetter M, Jensen MR, Blackledge M, Žídek L
RgGuinier 6.7 nm

SASDLC2 – Mothers against decapentaplegic homolog 2, SMAD2 phosphomimetic mutant 1.5 mg/ml

Mothers against decapentaplegic homolog 2 (C-terminus phosphomimetic mutant) experimental SAS data
Mothers against decapentaplegic homolog 2 (C-terminus phosphomimetic mutant) Kratky plot
Sample: Mothers against decapentaplegic homolog 2 (C-terminus phosphomimetic mutant) , 53 kDa Homo sapiens protein
Buffer: 20 mM Tris, 150 mM NaCl, pH: 7.2
Experiment: SAXS data collected at BM29, ESRF on 2016 Apr 4
Conformational landscape of multidomain SMAD proteins Computational and Structural Biotechnology Journal (2021)
Gomes T, Martin-Malpartida P, Ruiz L, Aragón E, Cordeiro T, Macias M
RgGuinier 5.3 nm
Dmax 20.0 nm

SASDED2 – Polyglutamine tract-binding protein 1 (PQBP-1)

Polyglutamine-binding protein 1 experimental SAS data
Polyglutamine tract-binding protein 1 (PQBP-1) Rg histogram
Sample: Polyglutamine-binding protein 1 monomer, 31 kDa Homo sapiens protein
Buffer: 20 mM Tris, 150 mM NaCl, 1mM DTT,, pH: 7
Experiment: SAXS data collected at EMBL X33, DORIS III, DESY on 2009 Nov 18
Solution model of the intrinsically disordered polyglutamine tract-binding protein-1. Biophys J 102(7):1608-16 (2012)
Rees M, Gorba C, de Chiara C, Bui TT, Garcia-Maya M, Drake AF, Okazawa H, Pastore A, Svergun D, Chen YW
RgGuinier 3.7 nm
Dmax 13.0 nm
VolumePorod 51 nm3

SASDEE2 – The N-terminal domain of estrogen receptor alpha

Estrogen receptor experimental SAS data
CUSTOM IN-HOUSE model
Sample: Estrogen receptor monomer, 20 kDa Homo sapiens protein
Buffer: 20 mM sodium phosphate, 50 mM NaCl, 0.05 mM TCEP, pH: 7.4
Experiment: SAXS data collected at 16-ID (LiX), National Synchrotron Light Source II (NSLS-II) on 2017 Jun 12
A Metastable Contact and Structural Disorder in the Estrogen Receptor Transactivation Domain. Structure 27(2):229-240.e4 (2019)
Peng Y, Cao S, Kiselar J, Xiao X, Du Z, Hsieh A, Ko S, Chen Y, Agrawal P, Zheng W, Shi W, Jiang W, Yang L, Chance MR, Surewicz WK, Buck M, Yang S
RgGuinier 3.0 nm
Dmax 10.0 nm

SASDEH2 – Unlabeled nucleoporin NUP49/NSP49 (N49) without denaturant

Nucleoporin NUP49/NSP49 experimental SAS data
Unlabeled nucleoporin NUP49/NSP49 (N49) without denaturant Rg histogram
Sample: Nucleoporin NUP49/NSP49 monomer, 4 kDa Saccharomyces cerevisiae protein
Buffer: PBS, 10 mM DTT, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2013 Dec 8
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 1.6 nm
Dmax 6.0 nm
VolumePorod 4 nm3

SASDEJ2 – Labeled nucleoporin NUP49/NSP49 (N49-Alexa488/Alexa594) without denaturant

Nucleoporin NUP49/NSP49Alexa Fluor™ 594 C5 MaleimideAlexa Fluor™ 488 C5 Hydroxylamine experimental SAS data
Nucleoporin NUP49/NSP49 Alexa Fluor™ 594 C5 Maleimide Alexa Fluor™ 488 C5 Hydroxylamine Kratky plot
Sample: Nucleoporin NUP49/NSP49 monomer, 4 kDa Saccharomyces cerevisiae protein
Alexa Fluor™ 594 C5 Maleimide monomer, 1 kDa
Alexa Fluor™ 488 C5 Hydroxylamine monomer, 1 kDa
Buffer: PBS, 10 mM DTT, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2013 Dec 8
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 1.9 nm
Dmax 6.5 nm
VolumePorod 12 nm3

SASDEK2 – Unlabeled nucleoporin NUP49/NSP49 (N49) with denaturant

Nucleoporin NUP49/NSP49 experimental SAS data
Unlabeled nucleoporin NUP49/NSP49 (N49) with denaturant Rg histogram
Sample: Nucleoporin NUP49/NSP49 monomer, 4 kDa Saccharomyces cerevisiae protein
Buffer: PBS, 10 mM DTT, 6 M urea, 0.3 M KCl, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2013 Dec 8
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 1.7 nm
Dmax 6.5 nm
VolumePorod 4 nm3

SASDEL2 – Labeled nucleoporin NUP49/NSP49 (N49-Alexa488/Alexa594) with denaturant

Nucleoporin NUP49/NSP49Alexa Fluor™ 594 C5 MaleimideAlexa Fluor™ 488 C5 Hydroxylamine experimental SAS data
Nucleoporin NUP49/NSP49 Alexa Fluor™ 594 C5 Maleimide Alexa Fluor™ 488 C5 Hydroxylamine Kratky plot
Sample: Nucleoporin NUP49/NSP49 monomer, 4 kDa Saccharomyces cerevisiae protein
Alexa Fluor™ 594 C5 Maleimide monomer, 1 kDa
Alexa Fluor™ 488 C5 Hydroxylamine monomer, 1 kDa
Buffer: PBS, 10 mM DTT, 6 M urea, 0.3 M KCl, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2013 Nov 8
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 2.1 nm
Dmax 7.7 nm
VolumePorod 7 nm3

SASDEM2 – Unlabeled Nuclear Localization Signal (NLS) from the inner nuclear membrane protein HEH2 without denaturant

Inner nuclear membrane protein HEH2 experimental SAS data
Unlabeled Nuclear Localization Signal (NLS) from the inner nuclear membrane protein HEH2 without denaturant Rg histogram
Sample: Inner nuclear membrane protein HEH2 monomer, 5 kDa Saccharomyces cerevisiae protein
Buffer: 25 mM HEPES, 150 mM NaCl, 10 mM DTT, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2014 Jan 25
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 2.4 nm
Dmax 11.6 nm
VolumePorod 16 nm3

SASDEN2 – Labeled Nuclear Localization Signal from the inner nuclear membrane protein HEH2 (NLS-Alexa488/Alexa594) without denaturant

Inner nuclear membrane protein HEH2Alexa Fluor™ 594 C5 MaleimideAlexa Fluor™ 488 C5 Hydroxylamine experimental SAS data
Inner nuclear membrane protein HEH2 Alexa Fluor™ 594 C5 Maleimide Alexa Fluor™ 488 C5 Hydroxylamine Kratky plot
Sample: Inner nuclear membrane protein HEH2 monomer, 5 kDa Saccharomyces cerevisiae protein
Alexa Fluor™ 594 C5 Maleimide monomer, 1 kDa
Alexa Fluor™ 488 C5 Hydroxylamine monomer, 1 kDa
Buffer: 25 mM HEPES, 150 mM NaCl, 10 mM DTT, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2014 Jan 25
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 2.0 nm
Dmax 7.3 nm
VolumePorod 10 nm3

SASDEP2 – Unlabeled Nuclear Localization Signal (NLS) from the inner nuclear membrane protein HEH2 with denaturant

Inner nuclear membrane protein HEH2 experimental SAS data
Unlabeled Nuclear Localization Signal (NLS) from the inner nuclear membrane protein HEH2 with denaturant Rg histogram
Sample: Inner nuclear membrane protein HEH2 monomer, 5 kDa Saccharomyces cerevisiae protein
Buffer: 25 mM HEPES, 150 mM NaCl, 10 mM DTT, 6 M urea, 0.3 M KCl, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2014 Jan 25
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 2.3 nm
Dmax 7.1 nm
VolumePorod 10 nm3

SASDEQ2 – Labeled Nuclear Localization Signal from the inner nuclear membrane protein HEH2 (NLS-Alexa488/Alexa594) with denaturant

Inner nuclear membrane protein HEH2Alexa Fluor™ 594 C5 MaleimideAlexa Fluor™ 488 C5 Hydroxylamine experimental SAS data
Inner nuclear membrane protein HEH2 Alexa Fluor™ 594 C5 Maleimide Alexa Fluor™ 488 C5 Hydroxylamine Kratky plot
Sample: Inner nuclear membrane protein HEH2 monomer, 5 kDa Saccharomyces cerevisiae protein
Alexa Fluor™ 594 C5 Maleimide monomer, 1 kDa
Alexa Fluor™ 488 C5 Hydroxylamine monomer, 1 kDa
Buffer: 25 mM HEPES, 150 mM NaCl, 10 mM DTT, 6 M urea, 0.3 M KCl, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2014 Jan 25
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 2.4 nm
Dmax 8.1 nm
VolumePorod 12 nm3

SASDER2 – Unlabeled Importin Beta Binding domain (IBB) from importin subunit alpha-1 without denaturant

Importin subunit alpha-1 experimental SAS data
Unlabeled Importin Beta Binding domain (IBB) from importin subunit alpha-1 without denaturant Rg histogram
Sample: Importin subunit alpha-1 monomer, 11 kDa Homo sapiens protein
Buffer: PBS, 10 mM DTT, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2013 Dec 8
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 3.2 nm
Dmax 11.5 nm
VolumePorod 30 nm3

SASDES2 – Labeled Importin Beta Binding Domain (IBB-Alexa488/Alexa594) from importin subunit alpha-1 without denaturant

Importin subunit alpha-1Alexa Fluor™ 594 C5 MaleimideAlexa Fluor™ 488 C5 Hydroxylamine experimental SAS data
Importin subunit alpha-1 Alexa Fluor™ 594 C5 Maleimide Alexa Fluor™ 488 C5 Hydroxylamine Kratky plot
Sample: Importin subunit alpha-1 monomer, 11 kDa Homo sapiens protein
Alexa Fluor™ 594 C5 Maleimide monomer, 1 kDa
Alexa Fluor™ 488 C5 Hydroxylamine monomer, 1 kDa
Buffer: PBS, 10 mM DTT, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2013 Dec 9
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 2.9 nm
Dmax 13.7 nm
VolumePorod 29 nm3

SASDET2 – Unlabeled Importin Beta Binding Domain (IBB) from importin subunit alpha-1 with denaturant

Importin subunit alpha-1 experimental SAS data
Unlabeled Importin Beta Binding Domain (IBB) from importin subunit alpha-1 with denaturant Rg histogram
Sample: Importin subunit alpha-1 monomer, 11 kDa Homo sapiens protein
Buffer: PBS, 10 mM DTT, 6 M urea, 0.3 M KCl, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2013 Jun 15
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 3.1 nm
Dmax 15.3 nm
VolumePorod 34 nm3

SASDEU2 – Labeled Importin Beta Binding Domain from importin subunit alpha-1 (IBB-Alexa488/Alexa594) with denaturant

Importin subunit alpha-1Alexa Fluor™ 594 C5 MaleimideAlexa Fluor™ 488 C5 Hydroxylamine experimental SAS data
Importin subunit alpha-1 Alexa Fluor™ 594 C5 Maleimide Alexa Fluor™ 488 C5 Hydroxylamine Kratky plot
Sample: Importin subunit alpha-1 monomer, 11 kDa Homo sapiens protein
Alexa Fluor™ 594 C5 Maleimide monomer, 1 kDa
Alexa Fluor™ 488 C5 Hydroxylamine monomer, 1 kDa
Buffer: PBS, 10 mM DTT, 6 M urea, 0.3 M KCl, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2013 Jun 15
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 3.2 nm
Dmax 13.3 nm
VolumePorod 29 nm3

SASDEV2 – Unlabeled nuclear pore complex protein Nup153 (NUS) without denaturant

Nuclear pore complex protein Nup153 experimental SAS data
Unlabeled nuclear pore complex protein Nup153 (NUS) without denaturant Rg histogram
Sample: Nuclear pore complex protein Nup153 monomer, 8 kDa Homo sapiens protein
Buffer: PBS, 10 mM DTT, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2013 Nov 8
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 2.5 nm
Dmax 9.2 nm
VolumePorod 15 nm3

SASDEW2 – Labeled nuclear pore complex protein Nup153 (NUS-Alexa488/Alexa594) without denaturant

Nuclear pore complex protein Nup153Alexa Fluor™ 594 C5 MaleimideAlexa Fluor™ 488 C5 Hydroxylamine experimental SAS data
Nuclear pore complex protein Nup153 Alexa Fluor™ 594 C5 Maleimide Alexa Fluor™ 488 C5 Hydroxylamine Kratky plot
Sample: Nuclear pore complex protein Nup153 monomer, 8 kDa Homo sapiens protein
Alexa Fluor™ 594 C5 Maleimide monomer, 1 kDa
Alexa Fluor™ 488 C5 Hydroxylamine monomer, 1 kDa
Buffer: PBS, 10 mM DTT, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2013 Nov 8
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 2.5 nm
Dmax 9.7 nm
VolumePorod 17 nm3

SASDEX2 – Unlabeled nuclear pore complex protein Nup153 (NUS) with denaturant

Nuclear pore complex protein Nup153 experimental SAS data
Unlabeled nuclear pore complex protein Nup153 (NUS) with denaturant Rg histogram
Sample: Nuclear pore complex protein Nup153 monomer, 8 kDa Homo sapiens protein
Buffer: PBS, 10 mM DTT, 6 M urea, 0.3 M KCl, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2013 Jun 15
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 3.1 nm
Dmax 11.0 nm
VolumePorod 26 nm3

SASDEY2 – Labeled nuclear pore complex protein Nup153 (NUS-Alexa488/Alexa594) with denaturant

Nuclear pore complex protein Nup153Alexa Fluor™ 594 C5 MaleimideAlexa Fluor™ 488 C5 Hydroxylamine experimental SAS data
Nuclear pore complex protein Nup153 Alexa Fluor™ 594 C5 Maleimide Alexa Fluor™ 488 C5 Hydroxylamine Kratky plot
Sample: Nuclear pore complex protein Nup153 monomer, 8 kDa Homo sapiens protein
Alexa Fluor™ 594 C5 Maleimide monomer, 1 kDa
Alexa Fluor™ 488 C5 Hydroxylamine monomer, 1 kDa
Buffer: PBS, 10 mM DTT, 6 M urea, 0.3 M KCl, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2013 Jun 15
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 2.9 nm
Dmax 10.8 nm
VolumePorod 19 nm3

SASDEZ2 – Unlabeled nuclear pore complex protein Nup153 (NUL) without denaturant

Nuclear pore complex protein Nup153 experimental SAS data
Unlabeled nuclear pore complex protein Nup153 (NUL) without denaturant Rg histogram
Sample: Nuclear pore complex protein Nup153 monomer, 12 kDa Homo sapiens protein
Buffer: PBS, 10 mM DTT, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2013 Nov 8
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 3.0 nm
Dmax 10.9 nm
VolumePorod 32 nm3

SASDE23 – Labeled nuclear pore complex protein Nup153 (NUL-Alexa488/Alexa594) without denaturant

Nuclear pore complex protein Nup153Alexa Fluor™ 594 C5 MaleimideAlexa Fluor™ 488 C5 Hydroxylamine experimental SAS data
Nuclear pore complex protein Nup153 Alexa Fluor™ 594 C5 Maleimide Alexa Fluor™ 488 C5 Hydroxylamine Kratky plot
Sample: Nuclear pore complex protein Nup153 monomer, 12 kDa Homo sapiens protein
Alexa Fluor™ 594 C5 Maleimide monomer, 1 kDa
Alexa Fluor™ 488 C5 Hydroxylamine monomer, 1 kDa
Buffer: PBS, 10 mM DTT, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2013 Nov 8
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 3.1 nm
Dmax 12.0 nm
VolumePorod 24 nm3

SASDE33 – Unlabeled nuclear pore complex protein Nup153 (NUL) with denaturant

Nuclear pore complex protein Nup153 experimental SAS data
Unlabeled nuclear pore complex protein Nup153 (NUL) with denaturant Rg histogram
Sample: Nuclear pore complex protein Nup153 monomer, 12 kDa Homo sapiens protein
Buffer: PBS, 10 mM DTT, 6 M urea, 0.3 M KCl, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2013 Nov 8
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 3.5 nm
Dmax 16.0 nm
VolumePorod 53 nm3

SASDE43 – Labeled nuclear pore complex protein Nup153 (NUL-Alexa488/Alexa594) with denaturant

Nuclear pore complex protein Nup153Alexa Fluor™ 594 C5 MaleimideAlexa Fluor™ 488 C5 Hydroxylamine experimental SAS data
Nuclear pore complex protein Nup153 Alexa Fluor™ 594 C5 Maleimide Alexa Fluor™ 488 C5 Hydroxylamine Kratky plot
Sample: Nuclear pore complex protein Nup153 monomer, 12 kDa Homo sapiens protein
Alexa Fluor™ 594 C5 Maleimide monomer, 1 kDa
Alexa Fluor™ 488 C5 Hydroxylamine monomer, 1 kDa
Buffer: PBS, 10 mM DTT, 6 M urea, 0.3 M KCl, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2013 Jun 15
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 3.2 nm
Dmax 12.0 nm
VolumePorod 27 nm3

SASDC53 – Colicin N Translocation domain

Colicin N Translocation domain experimental SAS data
Colicin N Translocation domain Rg histogram
Sample: Colicin N Translocation domain monomer, 10 kDa Escherichia coli protein
Buffer: 50 mM Na-Phosphate 300 mM NaCl, pH: 7.6
Experiment: SAXS data collected at BM29, ESRF on 2012 Jun 29
The Two-State Prehensile Tail of the Antibacterial Toxin Colicin N. Biophys J 113(8):1673-1684 (2017)
Johnson CL, Solovyova AS, Hecht O, Macdonald C, Waller H, Grossmann JG, Moore GR, Lakey JH
RgGuinier 2.8 nm
Dmax 11.4 nm
VolumePorod 22 nm3

SASDE53 – Unlabeled dihydrolipoyllysine-residue succinyltransferase component (BBL) with denaturant

Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex experimental SAS data
Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex Kratky plot
Sample: Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex monomer, 4 kDa Escherichia coli protein
Buffer: PBS, 10 mM DTT, 6 M urea, 0.3 M KCl, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2013 Nov 8
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 2.1 nm
Dmax 8.3 nm
VolumePorod 41 nm3

SASDE63 – Labeled dihydrolipoyllysine-residue succinyltransferase component (BBL-Alexa488/Alexa594) with denaturant

Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complexAlexa Fluor™ 594 C5 MaleimideAlexa Fluor™ 488 C5 Hydroxylamine experimental SAS data
Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex Alexa Fluor™ 594 C5 Maleimide Alexa Fluor™ 488 C5 Hydroxylamine Kratky plot
Sample: Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex monomer, 4 kDa Escherichia coli protein
Alexa Fluor™ 594 C5 Maleimide monomer, 1 kDa
Alexa Fluor™ 488 C5 Hydroxylamine monomer, 1 kDa
Buffer: PBS, 10 mM DTT, 6 M urea, 0.3 M KCl, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2013 Nov 8
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 2.3 nm
Dmax 10.7 nm
VolumePorod 13 nm3

SASDE73 – Unlabeled cold shock protein (CSP) with denaturant

Cold shock-like protein experimental SAS data
Cold shock-like protein Kratky plot
Sample: Cold shock-like protein monomer, 7 kDa Thermotoga maritima protein
Buffer: PBS, 10 mM DTT, 6 M urea, 0.3 M KCl, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2013 Mar 16
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 2.5 nm
Dmax 11.5 nm
VolumePorod 17 nm3

SASDE83 – Labeled cold shock protein (CSP-Alexa488/Alexa594) with denaturant

Cold shock-like proteinAlexa Fluor™ 594 C5 MaleimideAlexa Fluor™ 488 C5 Hydroxylamine experimental SAS data
Cold shock-like protein Alexa Fluor™ 594 C5 Maleimide Alexa Fluor™ 488 C5 Hydroxylamine Kratky plot
Sample: Cold shock-like protein monomer, 7 kDa Thermotoga maritima protein
Alexa Fluor™ 594 C5 Maleimide monomer, 1 kDa
Alexa Fluor™ 488 C5 Hydroxylamine monomer, 1 kDa
Buffer: PBS, 10 mM DTT, 6 M urea, 0.3 M KCl, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2013 Jun 15
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 2.2 nm
Dmax 8.3 nm
VolumePorod 9 nm3

SASDE93 – Unlabeled thioredoxin (TRX) with denaturant

Thioredoxin 1 experimental SAS data
Thioredoxin 1 Kratky plot
Sample: Thioredoxin 1 monomer, 12 kDa Escherichia coli protein
Buffer: PBS, 10 mM DTT, 6 M urea, 0.3 M KCl, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2013 Jun 15
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 3.6 nm
Dmax 13.0 nm
VolumePorod 34 nm3

SASDEA3 – Labeled thioredoxin (TRX-Alexa488/Alexa594) with denaturant

Thioredoxin 1Alexa Fluor™ 594 C5 MaleimideAlexa Fluor™ 488 C5 Hydroxylamine experimental SAS data
Thioredoxin 1 Alexa Fluor™ 594 C5 Maleimide Alexa Fluor™ 488 C5 Hydroxylamine Kratky plot
Sample: Thioredoxin 1 monomer, 12 kDa Escherichia coli protein
Alexa Fluor™ 594 C5 Maleimide monomer, 1 kDa
Alexa Fluor™ 488 C5 Hydroxylamine monomer, 1 kDa
Buffer: PBS, 10 mM DTT, 6 M urea, 0.3 M KCl, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2013 Jun 15
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 3.2 nm
Dmax 13.9 nm
VolumePorod 31 nm3

SASDEB3 – Unlabeled nuclear pore complex protein Nup98-Nup96 (N98) without denaturant

Nuclear pore complex protein Nup98-Nup96 experimental SAS data
Nuclear pore complex protein Nup98-Nup96 Kratky plot
Sample: Nuclear pore complex protein Nup98-Nup96 monomer, 15 kDa Homo sapiens protein
Buffer: PBS, 10 mM DTT, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2015 Jun 24
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 2.9 nm
Dmax 10.4 nm
VolumePorod 27 nm3

SASDEC3 – Unlabeled nucleoporin NSP1 (NSP) without denaturant

Nucleoporin NSP1 experimental SAS data
Nucleoporin NSP1 Kratky plot
Sample: Nucleoporin NSP1 monomer, 18 kDa Saccharomyces cerevisiae protein
Buffer: PBS, 10 mM DTT, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2015 Jun 24
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342-E6351 (2017)
Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA
RgGuinier 4.1 nm
Dmax 15.0 nm
VolumePorod 45 nm3

SASDF34 – Free Nuclear receptor CoRepressor NID (spanning from residue Gln2059 to Glu2325)

Nuclear receptor CoRepressor 1; Nuclear Receptor Interaction Domain (NID) experimental SAS data
Sample: Nuclear receptor CoRepressor 1; Nuclear Receptor Interaction Domain (NID) monomer, 29 kDa Mus musculus protein
Buffer: 50 mM Tris-HCl, 150 mM NaCl, 2 mM TCEP, pH: 7.5
Experiment: SAXS data collected at BM29, ESRF on 2016 Jun 20
Interplay of Protein Disorder in Retinoic Acid Receptor Heterodimer and Its Corepressor Regulates Gene Expression. Structure (2019)
Cordeiro TN, Sibille N, Germain P, Barthe P, Boulahtouf A, Allemand F, Bailly R, Vivat V, Ebel C, Barducci A, Bourguet W, le Maire A, Bernadó P
RgGuinier 4.7 nm
Dmax 17.7 nm
VolumePorod 102 nm3

SASDLS4 – Tau35, C-terminal fragment of human Tau protein

Microtubule-associated protein tau, Tau35 fragment experimental SAS data
Tau35, C-terminal fragment of human Tau protein Rg histogram
Sample: Microtubule-associated protein tau, Tau35 fragment monomer, 27 kDa Homo sapiens protein
Buffer: phosphate buffered saline, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2020 Oct 8
The Disease Associated Tau35 Fragment has an Increased Propensity to Aggregate Compared to Full-Length Tau Frontiers in Molecular Biosciences 8 (2021)
Lyu C, Da Vela S, Al-Hilaly Y, Marshall K, Thorogate R, Svergun D, Serpell L, Pastore A, Hanger D
RgGuinier 4.6 nm
Dmax 16.2 nm
VolumePorod 93 nm3

SASDLT4 – Tau protein, 2N3R isoform

Microtubule-associated protein tau, 2N3R isoform experimental SAS data
Tau protein, 2N3R isoform Rg histogram
Sample: Microtubule-associated protein tau, 2N3R isoform monomer, 43 kDa Homo sapiens protein
Buffer: phosphate buffered saline, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2020 Oct 8
The Disease Associated Tau35 Fragment has an Increased Propensity to Aggregate Compared to Full-Length Tau Frontiers in Molecular Biosciences 8 (2021)
Lyu C, Da Vela S, Al-Hilaly Y, Marshall K, Thorogate R, Svergun D, Serpell L, Pastore A, Hanger D
RgGuinier 6.3 nm
Dmax 19.8 nm
VolumePorod 211 nm3

SASDLU4 – Tau protein, 2N4R isoform

Microtubule-associated protein tau, 2N4R isoform experimental SAS data
Tau protein, 2N4R isoform Rg histogram
Sample: Microtubule-associated protein tau, 2N4R isoform monomer, 46 kDa Homo sapiens protein
Buffer: phosphate buffered saline, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2020 Oct 8
The Disease Associated Tau35 Fragment has an Increased Propensity to Aggregate Compared to Full-Length Tau Frontiers in Molecular Biosciences 8 (2021)
Lyu C, Da Vela S, Al-Hilaly Y, Marshall K, Thorogate R, Svergun D, Serpell L, Pastore A, Hanger D
RgGuinier 6.7 nm
Dmax 23.5 nm
VolumePorod 254 nm3

SASDEX4 – Herpes simplex virus 1 tegument protein UL11

Cytoplasmic envelopment protein 3 experimental SAS data
Cytoplasmic envelopment protein 3 Kratky plot
Sample: Cytoplasmic envelopment protein 3 monomer, 12 kDa Human alphaherpesvirus 1 protein
Buffer: 50 mM HEPES, 100 mM NaCl, 0.5 mM tris(2-carboxyethyl)phosphine (TCEP),, pH: 7.5
Experiment: SAXS data collected at G1, Cornell High Energy Synchrotron Source (CHESS) on 2017 Jun 4
Conserved Outer Tegument Component UL11 from Herpes Simplex Virus 1 Is an Intrinsically Disordered, RNA-Binding Protein. mBio 11(3) (2020)
Metrick CM, Koenigsberg AL, Heldwein EE
RgGuinier 2.4 nm
Dmax 12.0 nm
VolumePorod 30 nm3

SASDCY4 – RNase E 603-850

RNase E 603-850 experimental SAS data
RNase E 603-850 Rg histogram
Sample: RNase E 603-850 monomer, 30 kDa Escherichia coli protein
Buffer: 50 mM Tris HCl, 100 mM NaCl, 100 mM KCl, 10 mM MgCl2, 10 mM DTT and 5 % glycerol (v/v), pH: 7.5
Experiment: SAXS data collected at SWING, SOLEIL on 2014 Dec 5
Analysis of the natively unstructured RNA/protein-recognition core in the Escherichia coli RNA degradosome and its interactions with regulatory RNA/Hfq complexes. Nucleic Acids Res 46(1):387-402 (2018)
Bruce HA, Du D, Matak-Vinkovic D, Bandyra KJ, Broadhurst RW, Martin E, Sobott F, Shkumatov AV, Luisi BF
RgGuinier 5.3 nm
Dmax 27.5 nm
VolumePorod 139 nm3

SASDJB5 – Nipah virus phosphoprotein, N-terminal amino acids 1-406 (PNT)

Phosphoprotein experimental SAS data
Nipah virus phosphoprotein, N-terminal amino acids 1-406 (PNT) Rg histogram
Sample: Phosphoprotein monomer, 45 kDa Nipah henipavirus protein
Buffer: 20 mM Tris-HCl, 0.3 M NaCl, 5 mM DTT, pH: 8
Experiment: SAXS data collected at BM29, ESRF on 2018 May 3
Ensemble description of the intrinsically disordered N-terminal domain of the Nipah virus P/V protein from combined NMR and SAXS. Sci Rep 10(1):19574 (2020)
Schiavina M, Salladini E, Murrali MG, Tria G, Felli IC, Pierattelli R, Longhi S
RgGuinier 6.2 nm
Dmax 23.0 nm
VolumePorod 210 nm3

SASDLL5 – frataxin homolog, Yfh1, at 0 °C

Frataxin homolog, mitochondrial experimental SAS data
frataxin homolog, Yfh1, at 0 °C Rg histogram
Sample: Frataxin homolog, mitochondrial monomer, 14 kDa Saccharomyces cerevisiae (strain … protein
Buffer: 20 mM HEPES, pH: 7
Experiment: SAXS data collected at EMBL X33, DORIS III, DESY on 2008 Nov 28
The role of hydration in protein stability: comparison of the cold and heat unfolded states of Yfh1. J Mol Biol 417(5):413-24 (2012)
Adrover M, Martorell G, Martin SR, Urosev D, Konarev PV, Svergun DI, Daura X, Temussi P, Pastore A
RgGuinier 2.2 nm

SASDLM5 – frataxin homolog, Yfh1, at 20 °C

Frataxin homolog, mitochondrial experimental SAS data
frataxin homolog, Yfh1, at 20 °C Rg histogram
Sample: Frataxin homolog, mitochondrial monomer, 14 kDa Saccharomyces cerevisiae (strain … protein
Buffer: 20 mM HEPES, pH: 7
Experiment: SAXS data collected at EMBL X33, DORIS III, DESY on 2008 Nov 28
The role of hydration in protein stability: comparison of the cold and heat unfolded states of Yfh1. J Mol Biol 417(5):413-24 (2012)
Adrover M, Martorell G, Martin SR, Urosev D, Konarev PV, Svergun DI, Daura X, Temussi P, Pastore A
RgGuinier 2.1 nm

SASDLN5 – frataxin homolog, Yfh1, at 50 °C

Frataxin homolog, mitochondrial experimental SAS data
frataxin homolog, Yfh1, at 50 °C Rg histogram
Sample: Frataxin homolog, mitochondrial monomer, 14 kDa Saccharomyces cerevisiae (strain … protein
Buffer: 20 mM HEPES, pH: 7
Experiment: SAXS data collected at EMBL X33, DORIS III, DESY on 2008 Nov 28
The role of hydration in protein stability: comparison of the cold and heat unfolded states of Yfh1. J Mol Biol 417(5):413-24 (2012)
Adrover M, Martorell G, Martin SR, Urosev D, Konarev PV, Svergun DI, Daura X, Temussi P, Pastore A
RgGuinier 2.5 nm

SASDBY5 – C-terminal fragment (509-716) of the Methoprene-tolerant protein from Drosophila melanogaster

FI10506p experimental SAS data
C-terminal fragment (509-716) of the Methoprene-tolerant protein from Drosophila melanogaster Rg histogram
Sample: FI10506p monomer, 23 kDa Drosophila melanogaster protein
Buffer: 20mM Tris/HCl 150mM NaCl, pH: 7.5
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2015 Jul 21
Intrinsic Disorder of the C-Terminal Domain of Drosophila Methoprene-Tolerant Protein. PLoS One 11(9):e0162950 (2016)
Kolonko M, Ożga K, Hołubowicz R, Taube M, Kozak M, Ożyhar A, Greb-Markiewicz B
RgGuinier 5.1 nm
Dmax 22.0 nm

SASDJ76 – Fep1 wild type with [2Fe2S] cluster reconstituted

GATA-type iron responsive transcription factor Fep1 reconstituted experimental SAS data
Fep1 wild type with [2Fe2S] cluster reconstituted Rg histogram
Sample: GATA-type iron responsive transcription factor Fep1 reconstituted monomer, 22 kDa Komagataella pastoris protein
Buffer: 50 mM MOPS, 50 mM NaCl, pH: 7
Experiment: SAXS data collected at BM29, ESRF on 2018 Dec 5
Biophysical characterization of the complex between the iron-responsive transcription factor Fep1 and DNA. Eur Biophys J (2021)
Miele AE, Cervoni L, Le Roy A, Cutone A, Musci G, Ebel C, Bonaccorsi di Patti MC
RgGuinier 3.8 nm
Dmax 16.5 nm
VolumePorod 53 nm3

SASDJ86 – Fep1 wild type

GATA-type iron responsive transcription factor Fep1 experimental SAS data
Fep1 wild type Rg histogram
Sample: GATA-type iron responsive transcription factor Fep1 monomer, 22 kDa Komagataella pastoris protein
Buffer: 50 mM MOPS, 50 mM NaCl, pH: 7
Experiment: SAXS data collected at BM29, ESRF on 2018 Dec 5
Biophysical characterization of the complex between the iron-responsive transcription factor Fep1 and DNA. Eur Biophys J (2021)
Miele AE, Cervoni L, Le Roy A, Cutone A, Musci G, Ebel C, Bonaccorsi di Patti MC
RgGuinier 3.5 nm
Dmax 11.8 nm
VolumePorod 41 nm3

SASDDF6 – Myelin basic protein

Myelin basic protein experimental SAS data
Myelin basic protein Rg histogram
Sample: Myelin basic protein monomer, 18 kDa Bos taurus protein
Buffer: 20 mM NaH2PO4/ Na2HPO4, 99.9% D2O, pH: 4.8
Experiment: SAXS data collected at BM29, ESRF on 2013 Feb 21
Internal nanosecond dynamics in the intrinsically disordered myelin basic protein. J Am Chem Soc 136(19):6987-94 (2014)
Stadler AM, Stingaciu L, Radulescu A, Holderer O, Monkenbusch M, Biehl R, Richter D
RgGuinier 3.3 nm
Dmax 11.1 nm

SASDEF6 – Epstein-Barr nuclear antigen 2 (EBNA2 Type1, amino acids 381-455)

Epstein-Barr nuclear antigen 2 experimental SAS data
DAMMIN model
Sample: Epstein-Barr nuclear antigen 2 dimer, 16 kDa Human gammaherpesvirus 4 protein
Buffer: 20mM Tris-HCl, 100mM NaCl, 2% Sucrose and 1mM TCEP, pH: 7.5
Experiment: SAXS data collected at B21, Diamond Light Source on 2017 Sep 23
Increased association between Epstein-Barr virus EBNA2 from type 2 strains and the transcriptional repressor BS69 restricts B cell growth (2018)
Ponnusamy R, Khatri R, Correia P, Mancini E, Farrell P, West M
RgGuinier 2.7 nm
Dmax 9.3 nm
VolumePorod 19 nm3

SASDEG6 – Epstein-Barr nuclear antigen 2 (EBNA2 Type2, amino acids 348-422)

Epstein-Barr nuclear antigen 2 experimental SAS data
DAMMIN model
Sample: Epstein-Barr nuclear antigen 2 dimer, 16 kDa Human gammaherpesvirus 4 protein
Buffer: 20mM Tris-HCl, 100mM NaCl, 2% Sucrose and 1mM TCEP, pH: 7.5
Experiment: SAXS data collected at B21, Diamond Light Source on 2017 Sep 23
Increased association between Epstein-Barr virus EBNA2 from type 2 strains and the transcriptional repressor BS69 restricts B cell growth (2018)
Ponnusamy R, Khatri R, Correia P, Mancini E, Farrell P, West M
RgGuinier 2.8 nm
Dmax 10.4 nm
VolumePorod 20 nm3

SASDJJ6 – Sarcomeric intrinsically disordered protein FATZ-1 (N-FATZ-1)

N-ter construct of FATZ-1 (alias myozenin-1 or calsarcin-2) experimental SAS data
Sarcomeric intrinsically disordered protein FATZ-1 (N-FATZ-1) Rg histogram
Sample: N-ter construct of FATZ-1 (alias myozenin-1 or calsarcin-2) monomer, 20 kDa Homo sapiens protein
Buffer: 50 mM Tris-HCl 150 mM NaCl, pH: 7.5
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2020 Jun 29
Order from disorder in the sarcomere: FATZ forms a fuzzy but tight complex and phase-separated condensates with α-actinin. Sci Adv 7(22) (2021)
Sponga A, Arolas JL, Schwarz TC, Jeffries CM, Rodriguez Chamorro A, Kostan J, Ghisleni A, Drepper F, Polyansky A, De Almeida Ribeiro E, Pedron M, Zawadzka-Kazimierczuk A, Mlynek G, Peterbauer T, Doto ...
RgGuinier 3.5 nm
Dmax 14.1 nm
VolumePorod 46 nm3

SASDJK6 – Sarcomeric intrinsically disordered protein FATZ-1 (Δ91-FATZ-1)

Δ91 construct of FATZ-1 (alias myozenin-1 or calsarcin-2) experimental SAS data
Sarcomeric intrinsically disordered protein FATZ-1 (Δ91-FATZ-1) Rg histogram
Sample: Δ91 construct of FATZ-1 (alias myozenin-1 or calsarcin-2) monomer, 22 kDa Homo sapiens protein
Buffer: 50 mM Tris-HCl 150 mM NaCl, pH: 7.5
Experiment: SAXS data collected at BM29, ESRF on 2017 Jul 18
Order from disorder in the sarcomere: FATZ forms a fuzzy but tight complex and phase-separated condensates with α-actinin. Sci Adv 7(22) (2021)
Sponga A, Arolas JL, Schwarz TC, Jeffries CM, Rodriguez Chamorro A, Kostan J, Ghisleni A, Drepper F, Polyansky A, De Almeida Ribeiro E, Pedron M, Zawadzka-Kazimierczuk A, Mlynek G, Peterbauer T, Doto ...
RgGuinier 3.9 nm
Dmax 17.3 nm
VolumePorod 66 nm3

SASDET6 – Polyglutamine-binding protein 1 p.Lys192Serfs*7 (PQBP-1 XLID mutant K192Sfs*7)

Polyglutamine-binding protein 1 p.Lys192Serfs*7 experimental SAS data
Polyglutamine-binding protein 1 p.Lys192Serfs*7 (PQBP-1 XLID mutant K192Sfs*7) Rg histogram
Sample: Polyglutamine-binding protein 1 p.Lys192Serfs*7 dimer, 47 kDa Homo sapiens protein
Buffer: Phosphate-buffered saline, pH: 7.4
Experiment: SAXS data collected at EMBL X33, DORIS III, DESY on 2013 Feb 15
Frameshift PQBP-1 mutants K192Sfs*7 and R153Sfs*41 implicated in X-linked intellectual disability form stable dimers. J Struct Biol (2019)
Rahman SK, Okazawa H, Chen YW
RgGuinier 3.5 nm
Dmax 13.0 nm
VolumePorod 114 nm3

SASDEU6 – Polyglutamine-binding protein 1 p.Arg153Serfs*41 (PQBP-1 XLID mutant R153Sfs*41)

Polyglutamine-binding protein 1 p.Arg153Serfs*41 experimental SAS data
Polyglutamine-binding protein 1 p.Arg153Serfs*41 (PQBP-1 XLID mutant R153Sfs*41) Rg histogram
Sample: Polyglutamine-binding protein 1 p.Arg153Serfs*41 dimer, 44 kDa Homo sapiens protein
Buffer: Phosphate-buffered saline, pH: 7.4
Experiment: SAXS data collected at EMBL X33, DORIS III, DESY on 2013 Feb 15
Frameshift PQBP-1 mutants K192Sfs*7 and R153Sfs*41 implicated in X-linked intellectual disability form stable dimers. J Struct Biol (2019)
Rahman SK, Okazawa H, Chen YW
RgGuinier 3.6 nm
Dmax 13.0 nm
VolumePorod 100 nm3

SASDBZ6 – Draxin

Draxin experimental SAS data
Draxin Rg histogram
Sample: Draxin monomer, 45 kDa Homo sapiens protein
Buffer: 20 mM HEPES 150 mM NaCl, pH: 7.5
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2015 Aug 19
Structural Basis for Draxin-Modulated Axon Guidance and Fasciculation by Netrin-1 through DCC. Neuron 97(6):1261-1267.e4 (2018)
Liu Y, Bhowmick T, Liu Y, Gao X, Mertens HDT, Svergun DI, Xiao J, Zhang Y, Wang JH, Meijers R
RgGuinier 4.2 nm
Dmax 15.0 nm
VolumePorod 87 nm3

SASDF27 – Brain and Muscle ARNT-Like 1 from Mus musculus (D530-L625), monomer, trans-conformation locking mutation P624A

Aryl hydrocarbon receptor nuclear translocator-like protein 1 experimental SAS data
DAMMIN model
Sample: Aryl hydrocarbon receptor nuclear translocator-like protein 1 monomer, 10 kDa Mus musculus protein
Buffer: 25 mM Hepes, 150 NaCl, 1 mM DTT, 5% Glycerol, pH: 7.2
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2017 May 27
Structural and mechanistic insights into the interaction of the circadian transcription factor BMAL1 with the KIX domain of the CREB-binding protein. J Biol Chem (2019)
Garg A, Orru R, Ye W, Distler U, Chojnacki JE, Köhn M, Tenzer S, Sönnichsen C, Wolf E
RgGuinier 2.8 nm
Dmax 11.0 nm

SASDJS7 – Phloem-associated RNA chaperone-like protein (PARCL) at pH 7.5

Filaggrin-like protein experimental SAS data
Phloem-associated RNA chaperone-like protein (PARCL) at pH 7.5 Rg histogram
Sample: Filaggrin-like protein monomer, 20 kDa Arabidopsis thaliana protein
Buffer: 50 mM HEPES, 150 mM NaCl, 5 mM DTT, pH: 7.5
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2020 Aug 22
Intrinsically disordered plant protein PARCL co-localizes with RNA in phase-separated condensates whose formation can be regulated by mutating the PLD Journal of Biological Chemistry :102631 (2022)
Ostendorp A, Ostendorp S, Zhou Y, Chaudron Z, Wolffram L, Rombi K, von Pein L, Falke S, Jeffries C, Svergun D, Betzel C, Morris R, Kragler F, Kehr J
RgGuinier 3.5 nm
Dmax 14.0 nm
VolumePorod 46 nm3

SASDJT7 – Phloem-associated RNA chaperone-like protein (PARCL) at pH 6.5

Filaggrin-like protein experimental SAS data
Phloem-associated RNA chaperone-like protein (PARCL) at pH 6.5 Rg histogram
Sample: Filaggrin-like protein monomer, 20 kDa Arabidopsis thaliana protein
Buffer: 50 mM HEPES, 150 mM NaCl, 5 mM DTT, pH: 6.5
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2020 Aug 22
Intrinsically disordered plant protein PARCL co-localizes with RNA in phase-separated condensates whose formation can be regulated by mutating the PLD Journal of Biological Chemistry :102631 (2022)
Ostendorp A, Ostendorp S, Zhou Y, Chaudron Z, Wolffram L, Rombi K, von Pein L, Falke S, Jeffries C, Svergun D, Betzel C, Morris R, Kragler F, Kehr J
RgGuinier 3.7 nm
Dmax 15.0 nm
VolumePorod 48 nm3

SASDK68 – Transcriptional intermediary factor 2 (TIF2) intrinsically disordered coactivator

Nuclear receptor coactivator 2 experimental SAS data
OTHER [STATIC IMAGE] model
Sample: Nuclear receptor coactivator 2 monomer, 16 kDa Homo sapiens protein
Buffer: 150 mM NaCl, 50 mM BisTris pH 6.8, and 0.5 mM EDTA, pH: 6.8
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2017 Jun 14
Structural Insights into the Interaction of the Intrinsically Disordered Co-activator TIF2 with Retinoic Acid Receptor Heterodimer (RXR/RAR). J Mol Biol 433(9):166899 (2021)
Senicourt L, le Maire A, Allemand F, Carvalho JE, Guee L, Germain P, Schubert M, Bernadó P, Bourguet W, Sibille N
RgGuinier 3.7 nm
Dmax 16.3 nm
VolumePorod 50 nm3

SASDHF8 – Histatin 5 (Histatin 3; His3-(20-43)-peptide) at 4.89 mg/ml in 20 mM Tris 150 mM NaCl pH 7.0, 298 K

Histatin-3, His3-(20-43)-peptide experimental SAS data
Histatin 5 (Histatin 3; His3-(20-43)-peptide) at 4.89 mg/ml in 20 mM Tris 150 mM NaCl pH 7.0, 298 K Rg histogram
Sample: Histatin-3, His3-(20-43)-peptide monomer, 3 kDa Homo sapiens protein
Buffer: 20 mM Tris, 150 mM NaCl,, pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2020 Mar 13
Comment on the Optimal Parameters to Derive Intrinsically Disordered Protein Conformational Ensembles from Small-Angle X-ray Scattering Data Using the Ensemble Optimization Method Journal of Chemical Theory and Computation (2021)
Sagar A, Jeffries C, Petoukhov M, Svergun D, Bernadó P
RgGuinier 1.4 nm
Dmax 6.0 nm
VolumePorod 3 nm3

SASDHG8 – Histatin 5 (Histatin 3; His3-(20-43)-peptide) at 2.51 mg/ml in 20 mM Tris 150 mM NaCl pH 7.0, 298 K

Histatin-3, His3-(20-43)-peptide experimental SAS data
Histatin-3, His3-(20-43)-peptide Kratky plot
Sample: Histatin-3, His3-(20-43)-peptide monomer, 3 kDa Homo sapiens protein
Buffer: 20 mM Tris 150 mM NaCl, pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2020 Mar 13
Comment on the Optimal Parameters to Derive Intrinsically Disordered Protein Conformational Ensembles from Small-Angle X-ray Scattering Data Using the Ensemble Optimization Method Journal of Chemical Theory and Computation (2021)
Sagar A, Jeffries C, Petoukhov M, Svergun D, Bernadó P
RgGuinier 1.5 nm
Dmax 6.4 nm
VolumePorod 3 nm3

SASDHH8 – Histatin 5 (Histatin 3; His3-(20-43)-peptide) at 1.26 mg/ml in 20 mM Tris 150 mM NaCl pH 7.0, 298 K

Histatin-3, His3-(20-43)-peptide experimental SAS data
Histatin-3, His3-(20-43)-peptide Kratky plot
Sample: Histatin-3, His3-(20-43)-peptide monomer, 3 kDa Homo sapiens protein
Buffer: 20 mM Tris 150 mM NaCl, pH: 7
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2020 Mar 13
Comment on the Optimal Parameters to Derive Intrinsically Disordered Protein Conformational Ensembles from Small-Angle X-ray Scattering Data Using the Ensemble Optimization Method Journal of Chemical Theory and Computation (2021)
Sagar A, Jeffries C, Petoukhov M, Svergun D, Bernadó P
RgGuinier 1.5 nm
Dmax 6.0 nm
VolumePorod 3 nm3

SASDKH8 – C-Terminal Cytoplasmatic Region of the Translocated Intimin Receptor

Translocated intimin receptor Tir experimental SAS data
Translocated intimin receptor Tir Kratky plot
Sample: Translocated intimin receptor Tir monomer, 18 kDa Escherichia coli O127:H6 … protein
Buffer: 20 mM Sodium Phosphate, 150 mM NaCl, 1 mM EDTA, pH: 6.5
Experiment: SAXS data collected at BM29, ESRF on 2018 Sep 15
SAXS Studies on the Intracellular Region of the Translocated Intimin Receptor
Guillem Hernandez
RgGuinier 3.8 nm
Dmax 12.8 nm
VolumePorod 46 nm3

SASDFK8 – GON7, the fifth subunit of human KEOPS

EKC/KEOPS complex subunit GON7 experimental SAS data
EKC/KEOPS complex subunit GON7 Kratky plot
Sample: EKC/KEOPS complex subunit GON7 monomer, 13 kDa Homo sapiens protein
Buffer: 20 mM MES, 200 mM NaCl, 5 mM β-mercaptoethanol, pH: 6.5
Experiment: SAXS data collected at SWING, SOLEIL on 2017 Mar 26
Defects in t6A tRNA modification due to GON7 and YRDC mutations lead to Galloway-Mowat syndrome. Nat Commun 10(1):3967 (2019)
Arrondel C, Missoury S, Snoek R, Patat J, Menara G, Collinet B, Liger D, Durand D, Gribouval O, Boyer O, Buscara L, Martin G, Machuca E, Nevo F, Lescop E, Braun DA, Boschat AC, Sanquer S, Guerrera IC,...
RgGuinier 3.1 nm
Dmax 12.5 nm
VolumePorod 46 nm3

SASDKT8 – von Willebrand Factor peptide 3mg/ml

von Willebrand factor experimental SAS data
von Willebrand factor Kratky plot
Sample: von Willebrand factor monomer, 11 kDa Homo sapiens protein
Buffer: 10 mM HEPES, 150 mM NaCl, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2019 Aug 24
An Integrative Structural Biology Analysis of Von Willebrand Factor Binding and Processing by ADAMTS-13 in Solution. J Mol Biol 433(13):166954 (2021)
Del Amo-Maestro L, Sagar A, Pompach P, Goulas T, Scavenius C, Ferrero DS, Castrillo-Briceño M, Taulés M, Enghild JJ, Bernadó P, Gomis-Rüth FX
RgGuinier 3.1 nm
Dmax 14.0 nm
VolumePorod 28 nm3

SASDKU8 – von Willebrand Factor peptide 6mg/ml

von Willebrand factor experimental SAS data
von Willebrand Factor peptide 6mg/ml Rg histogram
Sample: von Willebrand factor monomer, 11 kDa Homo sapiens protein
Buffer: 10 mM HEPES, 150 mM NaCl, pH: 7.4
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2019 Aug 24
An Integrative Structural Biology Analysis of Von Willebrand Factor Binding and Processing by ADAMTS-13 in Solution. J Mol Biol 433(13):166954 (2021)
Del Amo-Maestro L, Sagar A, Pompach P, Goulas T, Scavenius C, Ferrero DS, Castrillo-Briceño M, Taulés M, Enghild JJ, Bernadó P, Gomis-Rüth FX
RgGuinier 3.0 nm
Dmax 14.9 nm
VolumePorod 27 nm3

SASDK29 – Mothers against decapentaplegic homolog 2, SMAD2, wild-type 1.3 mg/ml

Mothers against decapentaplegic homolog 2 experimental SAS data
Mothers against decapentaplegic homolog 2 Kratky plot
Sample: Mothers against decapentaplegic homolog 2 , 160 kDa Homo sapiens protein
Buffer: 20 mM Tris, 150 mM NaCl, pH: 7.2
Experiment: SAXS data collected at BM29, ESRF on 2016 Nov 11
Conformational landscape of multidomain SMAD proteins Computational and Structural Biotechnology Journal (2021)
Gomes T, Martin-Malpartida P, Ruiz L, Aragón E, Cordeiro T, Macias M
RgGuinier 3.8 nm
Dmax 21.0 nm

SASDL69 – Ectodomain of human syndecan-1

Syndecan-1 experimental SAS data
Ectodomain of human syndecan-1 Rg histogram
Sample: Syndecan-1 monomer, 27 kDa Homo sapiens protein
Buffer: 10 mM HEPES, 150 mM NaCl, pH: 7.4
Experiment: SAXS data collected at SWING, SOLEIL on 2019 Sep 26
Extended disorder at the cell surface: the conformational landscape of the ectodomains of syndecans Matrix Biology Plus :100081 (2021)
Gondelaud F, Bouakil M, Le Fèvre A, Erica Miele A, Chirot F, Duclos B, Liwo A, Ricard-Blum S
RgGuinier 5.3 nm

SASDL79 – Ectodomain of human syndecan-2

Syndecan-2 experimental SAS data
Ectodomain of human syndecan-2 Rg histogram
Sample: Syndecan-2 monomer, 17 kDa Homo sapiens protein
Buffer: 10 mM HEPES, 150 mM NaCl, pH: 7.4
Experiment: SAXS data collected at SWING, SOLEIL on 2019 Jan 31
Extended disorder at the cell surface: the conformational landscape of the ectodomains of syndecans Matrix Biology Plus :100081 (2021)
Gondelaud F, Bouakil M, Le Fèvre A, Erica Miele A, Chirot F, Duclos B, Liwo A, Ricard-Blum S
RgGuinier 4.3 nm

SASDL89 – Ectodomain of human syndecan-3

Syndecan-3 experimental SAS data
Ectodomain of human syndecan-3 Rg histogram
Sample: Syndecan-3 monomer, 39 kDa Homo sapiens protein
Buffer: 10 mM HEPES, 150 mM NaCl, pH: 7.4
Experiment: SAXS data collected at SWING, SOLEIL on 2018 May 29
Extended disorder at the cell surface: the conformational landscape of the ectodomains of syndecans Matrix Biology Plus :100081 (2021)
Gondelaud F, Bouakil M, Le Fèvre A, Erica Miele A, Chirot F, Duclos B, Liwo A, Ricard-Blum S
RgGuinier 6.5 nm

SASDL99 – Ectodomain of human syndecan-4 isoform-2 Monomer

Syndecan-4 experimental SAS data
Ectodomain of human syndecan-4 isoform-2 Monomer Rg histogram
Sample: Syndecan-4 monomer, 18 kDa Homo sapiens protein
Buffer: 10 mM HEPES, 150 mM NaCl, pH: 7.4
Experiment: SAXS data collected at SWING, SOLEIL on 2018 Jul 4
Extended disorder at the cell surface: the conformational landscape of the ectodomains of syndecans Matrix Biology Plus :100081 (2021)
Gondelaud F, Bouakil M, Le Fèvre A, Erica Miele A, Chirot F, Duclos B, Liwo A, Ricard-Blum S
RgGuinier 4.2 nm

SASDKC9 – Mothers against decapentaplegic homolog 4, SMAD4, wild-type

Mothers against decapentaplegic homolog 4 experimental SAS data
Mothers against decapentaplegic homolog 4 Kratky plot
Sample: Mothers against decapentaplegic homolog 4 monomer, 60 kDa Homo sapiens protein
Buffer: 20 mM Tris, 150 mM NaCl, pH: 7.2
Experiment: SAXS data collected at BM29, ESRF on 2015 Nov 4
Conformational landscape of multidomain SMAD proteins Computational and Structural Biotechnology Journal (2021)
Gomes T, Martin-Malpartida P, Ruiz L, Aragón E, Cordeiro T, Macias M
RgGuinier 4.4 nm
Dmax 22.0 nm

SASDKE9 – Mothers against decapentaplegic homolog 4, SMAD4, linker-MH2 fragment (amino acids 150-552)

Mothers against decapentaplegic homolog 4 (linker-MH2) experimental SAS data
Mothers against decapentaplegic homolog 4 (linker-MH2) Kratky plot
Sample: Mothers against decapentaplegic homolog 4 (linker-MH2) monomer, 44 kDa Homo sapiens protein
Buffer: 20 mM Tris, 150 mM NaCl, pH: 7.2
Experiment: SAXS data collected at BM29, ESRF on 2015 Apr 20
Conformational landscape of multidomain SMAD proteins Computational and Structural Biotechnology Journal (2021)
Gomes T, Martin-Malpartida P, Ruiz L, Aragón E, Cordeiro T, Macias M
RgGuinier 3.3 nm
Dmax 17.0 nm
VolumePorod 80 nm3

SASDKF9 – Mothers against decapentaplegic homolog 4, SMAD4, SADMH2 fragment (amino acids 272-552)

Mothers against decapentaplegic homolog 4 (SADMH2) experimental SAS data
Mothers against decapentaplegic homolog 4 (SADMH2) Kratky plot
Sample: Mothers against decapentaplegic homolog 4 (SADMH2) monomer, 31 kDa Homo sapiens protein
Buffer: 20 mM Tris, 150 mM NaCl, pH: 7.2
Experiment: SAXS data collected at BM29, ESRF on 2015 Apr 20
Conformational landscape of multidomain SMAD proteins Computational and Structural Biotechnology Journal (2021)
Gomes T, Martin-Malpartida P, Ruiz L, Aragón E, Cordeiro T, Macias M
RgGuinier 2.5 nm
Dmax 9.0 nm
VolumePorod 54 nm3

SASDLF9 – 200-310 region of Hendra virus P/V/W protein (PNT3)

Protein W experimental SAS data
200-310 region of Hendra virus P/V/W protein (PNT3) Rg histogram
Sample: Protein W monomer, 15 kDa Hendra virus (isolate … protein
Buffer: 50 mM sodium phosphate, 5 mM EDTA, pH: 6.5
Experiment: SAXS data collected at SWING, SOLEIL on 2021 Jun 12
Identification of a Region in the Common Amino-terminal Domain of Hendra Virus P, V, and W Proteins Responsible for Phase Transition and Amyloid Formation Biomolecules 11(9):1324 (2021)
Salladini E, Gondelaud F, Nilsson J, Pesce G, Bignon C, Murrali M, Fabre R, Pierattelli R, Kajava A, Horvat B, Gerlier D, Mathieu C, Longhi S
RgGuinier 3.4 nm
Dmax 15.5 nm
VolumePorod 38 nm3

SASDKG9 – Mothers against decapentaplegic homolog 4, SMAD4, MH2 fragment (amino acids 314-552)

Mothers against decapentaplegic homolog 4 (MH2 Fragment) experimental SAS data
Mothers against decapentaplegic homolog 4 (MH2 Fragment) Kratky plot
Sample: Mothers against decapentaplegic homolog 4 (MH2 Fragment) monomer, 26 kDa Homo sapiens protein
Buffer: 20 mM Tris, 150 mM NaCl, pH: 7.2
Experiment: SAXS data collected at BM29, ESRF on 2015 Apr 20
Conformational landscape of multidomain SMAD proteins Computational and Structural Biotechnology Journal (2021)
Gomes T, Martin-Malpartida P, Ruiz L, Aragón E, Cordeiro T, Macias M
RgGuinier 2.1 nm
Dmax 8.0 nm

SASDLK9 – Hendra virus W protein in 1 M urea, 5 mM DTT

Protein W experimental SAS data
Hendra virus W protein in 1 M urea, 5 mM DTT Rg histogram
Sample: Protein W monomer, 53 kDa Hendra virus (isolate … protein
Buffer: 20 mM HEPES, 150 mM NaCl, 1 M urea, 5 mM DTT, pH: 7
Experiment: SAXS data collected at SWING, SOLEIL on 2021 Jun 12
Experimental Evidence of Intrinsic Disorder and Amyloid Formation by the Henipavirus W Proteins International Journal of Molecular Sciences 23(2):923 (2022)
Pesce G, Gondelaud F, Ptchelkine D, Nilsson J, Bignon C, Cartalas J, Fourquet P, Longhi S
RgGuinier 7.2 nm
Dmax 24.0 nm
VolumePorod 338 nm3

SASDLL9 – Nipah henipavirus W protein in 1 M urea, 5 mM DTT

Protein W experimental SAS data
Nipah henipavirus W protein in 1 M urea, 5 mM DTT Rg histogram
Sample: Protein W monomer, 53 kDa Nipah henipavirus protein
Buffer: 20 mM HEPES, 150 mM NaCl, 1 M urea, 5 mM DTT, pH: 7
Experiment: SAXS data collected at SWING, SOLEIL on 2021 Jun 12
Experimental Evidence of Intrinsic Disorder and Amyloid Formation by the Henipavirus W Proteins International Journal of Molecular Sciences 23(2):923 (2022)
Pesce G, Gondelaud F, Ptchelkine D, Nilsson J, Bignon C, Cartalas J, Fourquet P, Longhi S
RgGuinier 7.1 nm
Dmax 24.5 nm
VolumePorod 327 nm3

SASDHV9 – Murine major prion protein PrPc 23-230

Major prion protein experimental SAS data
CORAL model
Sample: Major prion protein monomer, 23 kDa Mus musculus protein
Buffer: 10mM HEPES, 150 mM NaCl, pH: 7.5
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2019 Dec 15
Characterization of murine prion protein
Stefano Da Vela
RgGuinier 2.8 nm
Dmax 9.9 nm
VolumePorod 43 nm3

SASDCY9 – Oxidised chloroplastic calvin cycle protein CP12 from C. reinhardtii

Calvin cycle protein CP12, chloroplastic experimental SAS data
Oxidised chloroplastic calvin cycle protein CP12 from C. reinhardtii Rg histogram
Sample: Calvin cycle protein CP12, chloroplastic monomer, 11 kDa Chlamydomonas reinhardtii protein
Buffer: 50 mM phosphate buffer, 50 mM NaCl, 20 mM oxidized DTT, pH: 6.5
Experiment: SAXS data collected at SWING, SOLEIL on 2015 Nov 3
Cryptic Disorder Out of Disorder: Encounter between Conditionally Disordered CP12 and Glyceraldehyde-3-Phosphate Dehydrogenase. J Mol Biol 430(8):1218-1234 (2018)
Launay H, Barré P, Puppo C, Zhang Y, Maneville S, Gontero B, Receveur-Bréchot V
RgGuinier 2.3 nm
Dmax 10.0 nm
VolumePorod 22 nm3

SASDKD6 – NURS complex subunit red1

NURS complex subunit red1 experimental SAS data
NURS complex subunit red1 Kratky plot
Sample: NURS complex subunit red1 monomer, 8 kDa Schizosaccharomyces pombe (strain … protein
Buffer: 20 mM HEPES, pH 7.5, 150 mM NaCl, 1mM DTT, pH: 7.5
Experiment: SAXS data collected at EMBL P12, PETRA III, DESY on 2019 Nov 12
Mechanistic insights into RNA surveillance by the canonical poly(A) polymerase Pla1 of the MTREC complex. Nat Commun 14(1):772 (2023)
Soni K, Sivadas A, Horvath A, Dobrev N, Hayashi R, Kiss L, Simon B, Wild K, Sinning I, Fischer T
RgGuinier 2.5 nm
Dmax 8.7 nm
VolumePorod 12 nm3