Search

 
Advanced search  

113 hits found for Nucleic Acids Res

SASDF52 – dsRBD1 and dsRBD2 domains of Drosophila helicase dosage compensation regulator, MLE

Dosage compensation regulator experimental SAS data
dsRBD1 and dsRBD2 domains of Drosophila helicase dosage compensation regulator, MLE Rg histogram
Sample: Dosage compensation regulator monomer, 29 kDa Drosophila melanogaster protein
Buffer: 20 mM NaPO4, 200 mM NaCl, 1 mM DTT, pH: 6.5
Experiment: SAXS data collected at BM29, ESRF on 2016 Nov 29
Structure, dynamics and roX2-lncRNA binding of tandem double-stranded RNA binding domains dsRBD1,2 of Drosophila helicase Maleless. Nucleic Acids Res 47(8):4319-4333 (2019)
Ankush Jagtap PK, Müller M, Masiewicz P, von Bülow S, Hollmann NM, Chen PC, Simon B, Thomae AW, Becker PB, Hennig J
RgGuinier 3.2 nm
Dmax 12.5 nm
VolumePorod 22 nm3

SASDC62 – Basic domain of telomeric repeat-binding factor 2 (TRF2)

Basic domain of telomeric repeat-binding factor 2 experimental SAS data
Basic domain of telomeric repeat-binding factor 2 Kratky plot
Sample: Basic domain of telomeric repeat-binding factor 2 monomer, 5 kDa Homo sapiens protein
Buffer: 50 mM NaPi, 50 mM NaCl, pH: 7
Experiment: SAXS data collected at Rigaku BioSAXS-1000, CEITEC on 2015 Mar 5
...restores it. Nucleic Acids Res 45(21):12170-12180 (2017)
Necasová I, Janoušková E, Klumpler T, Hofr C
RgGuinier 1.7 nm
Dmax 7.1 nm
VolumePorod 4 nm3

SASDF62 – Mixture of the dsRBD1 and dsRBD2 domains of Drosophila helicase dosage compensation regulator, MLE, and the roX2 RNA stem-loop 7 18mer-fragment, at 1.0 mg/ml

Dosage compensation regulatorroX2 stem-loop 7, 18-mer fragment experimental SAS data
Dosage compensation regulator roX2 stem-loop 7, 18-mer fragment Kratky plot
Sample: Dosage compensation regulator monomer, 29 kDa Drosophila melanogaster protein
roX2 stem-loop 7, 18-mer fragment monomer, 12 kDa synthetic construct RNA
Buffer: 20 mM NaPO4, 200 mM NaCl, 1 mM DTT, pH: 6.5
Experiment: SAXS data collected at BM29, ESRF on 2016 Nov 29
Structure, dynamics and roX2-lncRNA binding of tandem double-stranded RNA binding domains dsRBD1,2 of Drosophila helicase Maleless. Nucleic Acids Res 47(8):4319-4333 (2019)
Ankush Jagtap PK, Müller M, Masiewicz P, von Bülow S, Hollmann NM, Chen PC, Simon B, Thomae AW, Becker PB, Hennig J
RgGuinier 3.1 nm
Dmax 13.3 nm
VolumePorod 25 nm3

SASDF72 – roX2 RNA stem-loop 7 18mer-fragment

roX2 stem-loop 7, 18-mer fragment experimental SAS data
DAMMIN model
Sample: roX2 stem-loop 7, 18-mer fragment monomer, 12 kDa synthetic construct RNA
Buffer: 20 mM NaPO4, 200 mM NaCl, 1 mM DTT, pH: 6.5
Experiment: SAXS data collected at BM29, ESRF on 2016 Nov 29
Structure, dynamics and roX2-lncRNA binding of tandem double-stranded RNA binding domains dsRBD1,2 of Drosophila helicase Maleless. Nucleic Acids Res 47(8):4319-4333 (2019)
Ankush Jagtap PK, Müller M, Masiewicz P, von Bülow S, Hollmann NM, Chen PC, Simon B, Thomae AW, Becker PB, Hennig J
RgGuinier 1.8 nm
Dmax 8.5 nm
VolumePorod 14 nm3

SASDAN3 – MutS dimer

DNA mismatch repair protein MutS experimental SAS data
DAMMIF model
Sample: DNA mismatch repair protein MutS dimer, 191 kDa Escherichia coli protein
Buffer: 50 mM HEPES 50 mM KCl, pH: 7.5
Experiment: SAXS data collected at EMBL P12, PETRA III on 2013 Feb 28
Using stable MutS dimers and tetramers to quantitatively analyze DNA mismatch recognition and sliding clamp formation. Nucleic Acids Res 41(17):8166-81 (2013)
Groothuizen FS, Fish A, Petoukhov MV, Reumer A, Manelyte L, Winterwerp HH, Marinus MG, Lebbink JH, Svergun DI, Friedhoff P, Sixma TK
RgGuinier 4.7 nm
Dmax 15.5 nm
VolumePorod 307 nm3

SASDAQ3 – MutS tetramer

DNA mismatch repair protein MutS experimental SAS data
DAMMIF model
Sample: DNA mismatch repair protein MutS tetramer, 381 kDa Escherichia coli protein
Buffer: 50 mM HEPES 50 mM KCl, pH: 7.5
Experiment: SAXS data collected at EMBL X33, DORIS III on 2011 May 12
Using stable MutS dimers and tetramers to quantitatively analyze DNA mismatch recognition and sliding clamp formation. Nucleic Acids Res 41(17):8166-81 (2013)
Groothuizen FS, Fish A, Petoukhov MV, Reumer A, Manelyte L, Winterwerp HH, Marinus MG, Lebbink JH, Svergun DI, Friedhoff P, Sixma TK
RgGuinier 7.8 nm
Dmax 28.0 nm
VolumePorod 700 nm3

SASDDR3 – Yeast tRNA Nm34 methyltransferase Trm7-Trm734 complex from Sacharomyces cerevisiae

Trm7: tRNA (cytidine(32)/guanosine(34)-2'-O)-methyltransferaseTrm734: Regulator of Ty1 transposition protein 10 experimental SAS data
CORAL model
Sample: Trm7: tRNA (cytidine(32)/guanosine(34)-2'-O)-methyltransferase monomer, 36 kDa Saccharomyces cerevisiae (strain … protein
Trm734: Regulator of Ty1 transposition protein 10 monomer, 116 kDa Saccharomyces cerevisiae (strain … protein
Buffer: 50 mM HEPES, 200 mM KCl, 5% v/v Glycerol, 10mM β-mercaptoethanol, pH: 8
Experiment: SAXS data collected at BL-10C, ...Research Organization (KEK) on 2015 Dec 16
Structure of tRNA methyltransferase complex of Trm7 and Trm734 reveals a novel binding interface for tRNA recognition. Nucleic Acids Res (2019)
Hirata A, Okada K, Yoshii K, Shiraishi H, Saijo S, Yonezawa K, Shimizu N, Hori H
RgGuinier 3.8 nm
Dmax 13.0 nm
VolumePorod 218 nm3

SASDAX3 – MutS tetramer

DNA mismatch repair protein MutS experimental SAS data
DNA mismatch repair protein MutS Kratky plot
Sample: DNA mismatch repair protein MutS tetramer, 381 kDa Escherichia coli protein
Buffer: 50 mM HEPES 50 mM KCl, pH: 7.5
Experiment: SAXS data collected at EMBL X33, DORIS III on 2011 May 12
Using stable MutS dimers and tetramers to quantitatively analyze DNA mismatch recognition and sliding clamp formation. Nucleic Acids Res 41(17):8166-81 (2013)
Groothuizen FS, Fish A, Petoukhov MV, Reumer A, Manelyte L, Winterwerp HH, Marinus MG, Lebbink JH, Svergun DI, Friedhoff P, Sixma TK
RgGuinier 8.5 nm
Dmax 29.0 nm
VolumePorod 750 nm3

SASDBX3 – Aureobox dsDNA

Aureobox dsDNA experimental SAS data
DAMFILT model
Sample: Aureobox dsDNA monomer, 13 kDa synthetic construct DNA
Buffer: 50 mM Tris 50 mM boric acid 1 mM EDTA, pH: 8
Experiment: SAXS data collected at BM29, ESRF on 2014 Nov 6
...responsive domains of diatom class I aureochromes. Nucleic Acids Res 44(12):5957-70 (2016)
Banerjee A, Herman E, Serif M, Maestre-Reyna M, Hepp S, Pokorny R, Kroth PG, Essen LO, Kottke T
RgGuinier 2.0 nm
Dmax 8.6 nm
VolumePorod 18 nm3

SASDAY3 – MutS tetramer

DNA mismatch repair protein MutS experimental SAS data
DNA mismatch repair protein MutS Kratky plot
Sample: DNA mismatch repair protein MutS tetramer, 381 kDa Escherichia coli protein
Buffer: 50 mM HEPES 50 mM KCl, pH: 7.5
Experiment: SAXS data collected at EMBL X33, DORIS III on 2011 May 12
Using stable MutS dimers and tetramers to quantitatively analyze DNA mismatch recognition and sliding clamp formation. Nucleic Acids Res 41(17):8166-81 (2013)
Groothuizen FS, Fish A, Petoukhov MV, Reumer A, Manelyte L, Winterwerp HH, Marinus MG, Lebbink JH, Svergun DI, Friedhoff P, Sixma TK
RgGuinier 8.3 nm
Dmax 29.0 nm
VolumePorod 720 nm3

SASDBY3 – Aureochrome 1a bZIP-LOV module: PtAUREO1a bZIP-LOV (Light oxygen voltage) module (light state-TBE)

Aureochrome 1a bZIP-LOV module experimental SAS data
DAMFILT model
Sample: Aureochrome 1a bZIP-LOV module dimer, 57 kDa Phaeodactylum tricornutum protein
Buffer: 50 mM Tris 50 mM boric acid 1 mM EDTA, pH: 8
Experiment: SAXS data collected at BM29, ESRF on 2014 Nov 6
...responsive domains of diatom class I aureochromes. Nucleic Acids Res 44(12):5957-70 (2016)
Banerjee A, Herman E, Serif M, Maestre-Reyna M, Hepp S, Pokorny R, Kroth PG, Essen LO, Kottke T
RgGuinier 3.4 nm
Dmax 12.6 nm
VolumePorod 115 nm3

SASDAZ3 – MutS tetramer

DNA mismatch repair protein MutS experimental SAS data
DNA mismatch repair protein MutS Kratky plot
Sample: DNA mismatch repair protein MutS tetramer, 381 kDa Escherichia coli protein
Buffer: 50 mM HEPES 50 mM KCl, pH: 7.5
Experiment: SAXS data collected at EMBL X33, DORIS III on 2011 May 12
Using stable MutS dimers and tetramers to quantitatively analyze DNA mismatch recognition and sliding clamp formation. Nucleic Acids Res 41(17):8166-81 (2013)
Groothuizen FS, Fish A, Petoukhov MV, Reumer A, Manelyte L, Winterwerp HH, Marinus MG, Lebbink JH, Svergun DI, Friedhoff P, Sixma TK
RgGuinier 8.0 nm

SASDBZ3 – Aureochrome 1a bZIP-LOV module: PtAUREO1a bZIP-LOV (Light oxygen voltage)/DNA complex (light state)

Aureobox dsDNAAureochrome 1a bZIP-LOV module experimental SAS data
DAMFILT model
Sample: Aureobox dsDNA monomer, 13 kDa synthetic construct DNA
Aureochrome 1a bZIP-LOV module dimer, 57 kDa Phaeodactylum tricornutum protein
Buffer: 50 mM Tris 50 mM boric acid 1 mM EDTA, pH: 8
Experiment: SAXS data collected at BM29, ESRF on 2014 Nov 6
...responsive domains of diatom class I aureochromes. Nucleic Acids Res 44(12):5957-70 (2016)
Banerjee A, Herman E, Serif M, Maestre-Reyna M, Hepp S, Pokorny R, Kroth PG, Essen LO, Kottke T
RgGuinier 4.5 nm
Dmax 16.7 nm
VolumePorod 97 nm3

SASDA24 – MutS tetramer

DNA mismatch repair protein MutS experimental SAS data
DNA mismatch repair protein MutS Kratky plot
Sample: DNA mismatch repair protein MutS tetramer, 381 kDa Escherichia coli protein
Buffer: 50 mM HEPES 50 mM KCl, pH: 7.5
Experiment: SAXS data collected at EMBL X33, DORIS III on 2011 May 12
Using stable MutS dimers and tetramers to quantitatively analyze DNA mismatch recognition and sliding clamp formation. Nucleic Acids Res 41(17):8166-81 (2013)
Groothuizen FS, Fish A, Petoukhov MV, Reumer A, Manelyte L, Winterwerp HH, Marinus MG, Lebbink JH, Svergun DI, Friedhoff P, Sixma TK
RgGuinier 7.8 nm
Dmax 27.0 nm

SASDB24 – Aureochrome 1a bZIP-LOV module: PtAUREO1a bZIP-LOV (Light oxygen voltage) module (light state, Tris)

Aureochrome 1a bZIP-LOV module experimental SAS data
Aureochrome 1a bZIP-LOV module Kratky plot
Sample: Aureochrome 1a bZIP-LOV module dimer, 57 kDa Phaeodactylum tricornutum protein
Buffer: 10 mM Tris 300 mM NaCl, pH: 8
Experiment: SAXS data collected at BM29, ESRF on 2014 Nov 6
...responsive domains of diatom class I aureochromes. Nucleic Acids Res 44(12):5957-70 (2016)
Banerjee A, Herman E, Serif M, Maestre-Reyna M, Hepp S, Pokorny R, Kroth PG, Essen LO, Kottke T
RgGuinier 3.9 nm
Dmax 12.5 nm
VolumePorod 121 nm3

SASDB34 – Aureochrome 1a bZIP-LOV module: PtAUREO1a bZIP-LOV (Light oxygen voltage) module (dark state, Tris)

Aureochrome 1a bZIP-LOV module experimental SAS data
Aureochrome 1a bZIP-LOV module Kratky plot
Sample: Aureochrome 1a bZIP-LOV module dimer, 57 kDa Phaeodactylum tricornutum protein
Buffer: 10 mM Tris 300 mM NaCl, pH: 8
Experiment: SAXS data collected at BM29, ESRF on 2014 Nov 6
...responsive domains of diatom class I aureochromes. Nucleic Acids Res 44(12):5957-70 (2016)
Banerjee A, Herman E, Serif M, Maestre-Reyna M, Hepp S, Pokorny R, Kroth PG, Essen LO, Kottke T
RgGuinier 3.8 nm
Dmax 12.5 nm
VolumePorod 117 nm3

SASDH44 – 3' Complex of XPA-DBD and RPA70AB

DNA repair protein complementing XP-A cellsReplication protein A 70 kDa DNA-binding subunit3-prime  Nucleotide Excision Repair Junction Model Substrate experimental SAS data
HADDOCK model
Sample: DNA repair protein complementing XP-A cells monomer, 17 kDa Homo sapiens protein
Replication protein A 70 kDa DNA-binding subunit monomer, 27 kDa Homo sapiens protein
3-prime Nucleotide Excision Repair Junction Model Substrate monomer, 11 kDa DNA
Buffer: 20 mM Tris, 150 mM NaCl, 2% glycerol, 1 mM DTT, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 17 Nov 2
A key interaction with RPA orients XPA in NER complexes. Nucleic Acids Res (2020)
Topolska-Woś AM, Sugitani N, Cordoba JJ, Le Meur KV, Le Meur RA, Kim HS, Yeo JE, Rosenberg D, Hammel M, Schärer OD, Chazin WJ
RgGuinier 3.1 nm
Dmax 9.7 nm
VolumePorod 103 nm3

SASDH54 – 5' Complex of XPA-DBD with RPA70AB

DNA repair protein complementing XP-A cellsReplication protein A 70 kDa DNA-binding subunit5-prime Nucleotide Excision Repair Junction Model Substrate experimental SAS data
HADDOCK model
Sample: DNA repair protein complementing XP-A cells monomer, 17 kDa Homo sapiens protein
Replication protein A 70 kDa DNA-binding subunit monomer, 27 kDa Homo sapiens protein
5-prime Nucleotide Excision Repair Junction Model Substrate monomer, 11 kDa DNA
Buffer: 20 mM Tris, 150 mM NaCl, 2% glycerol, 1 mM DTT, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2019 Jun 4
A key interaction with RPA orients XPA in NER complexes. Nucleic Acids Res (2020)
Topolska-Woś AM, Sugitani N, Cordoba JJ, Le Meur KV, Le Meur RA, Kim HS, Yeo JE, Rosenberg D, Hammel M, Schärer OD, Chazin WJ
RgGuinier 2.9 nm
Dmax 97.0 nm
VolumePorod 87 nm3

SASDC74 – ...resolved 0ms

Truncated P5abc subdomain from tetrahymena ribozyme experimental SAS data
Truncated P5abc subdomain from tetrahymena ribozyme Kratky plot
Sample: Truncated P5abc subdomain from tetrahymena ribozyme monomer, 18 kDa RNA
Buffer: 10mM KMOPS 20mM KCl 1mM MgCl2 20uM EDTA, pH: 7
Experiment: SAXS data collected at G1, Cornell High Energy Synchrotron Source (CHESS) on 2016 Dec 3
Revealing the distinct folding phases of an RNA three-helix junction. Nucleic Acids Res 46(14):7354-7365 (2018)
Plumridge A, Katz AM, Calvey GD, Elber R, Kirmizialtin S, Pollack L
RgGuinier 2.5 nm
Dmax 8.0 nm

SASDC94 – ...resolved 10ms

Truncated P5abc subdomain from tetrahymena ribozyme experimental SAS data
Truncated P5abc subdomain from tetrahymena ribozyme Kratky plot
Sample: Truncated P5abc subdomain from tetrahymena ribozyme monomer, 18 kDa RNA
Buffer: 10mM KMOPS 20mM KCl 1mM MgCl2 20uM EDTA, pH: 7
Experiment: SAXS data collected at G1, Cornell High Energy Synchrotron Source (CHESS) on 2016 Dec 3
Revealing the distinct folding phases of an RNA three-helix junction. Nucleic Acids Res 46(14):7354-7365 (2018)
Plumridge A, Katz AM, Calvey GD, Elber R, Kirmizialtin S, Pollack L
RgGuinier 2.3 nm
Dmax 7.2 nm

SASDCA4 – ...resolved 30ms

Truncated P5abc subdomain from tetrahymena ribozyme experimental SAS data
Truncated P5abc subdomain from tetrahymena ribozyme Kratky plot
Sample: Truncated P5abc subdomain from tetrahymena ribozyme monomer, 18 kDa RNA
Buffer: 10mM KMOPS 20mM KCl 1mM MgCl2 20uM EDTA, pH: 7
Experiment: SAXS data collected at G1, Cornell High Energy Synchrotron Source (CHESS) on 2016 Dec 3
Revealing the distinct folding phases of an RNA three-helix junction. Nucleic Acids Res 46(14):7354-7365 (2018)
Plumridge A, Katz AM, Calvey GD, Elber R, Kirmizialtin S, Pollack L
RgGuinier 2.2 nm
Dmax 7.0 nm

SASDCB4 – ...resolved 100ms

Truncated P5abc subdomain from tetrahymena ribozyme experimental SAS data
Truncated P5abc subdomain from tetrahymena ribozyme Kratky plot
Sample: Truncated P5abc subdomain from tetrahymena ribozyme monomer, 18 kDa RNA
Buffer: 10mM KMOPS 20mM KCl 1mM MgCl2 20uM EDTA, pH: 7
Experiment: SAXS data collected at G1, Cornell High Energy Synchrotron Source (CHESS) on 2016 Dec 3
Revealing the distinct folding phases of an RNA three-helix junction. Nucleic Acids Res 46(14):7354-7365 (2018)
Plumridge A, Katz AM, Calvey GD, Elber R, Kirmizialtin S, Pollack L
RgGuinier 2.3 nm
Dmax 7.1 nm

SASDCC4 – ...resolved 300ms

Truncated P5abc subdomain from tetrahymena ribozyme experimental SAS data
Truncated P5abc subdomain from tetrahymena ribozyme Kratky plot
Sample: Truncated P5abc subdomain from tetrahymena ribozyme monomer, 18 kDa RNA
Buffer: 10mM KMOPS 20mM KCl 1mM MgCl2 20uM EDTA, pH: 7
Experiment: SAXS data collected at G1, Cornell High Energy Synchrotron Source (CHESS) on 2016 Dec 3
Revealing the distinct folding phases of an RNA three-helix junction. Nucleic Acids Res 46(14):7354-7365 (2018)
Plumridge A, Katz AM, Calvey GD, Elber R, Kirmizialtin S, Pollack L
RgGuinier 2.2 nm
Dmax 6.8 nm

SASDCD4 – ...resolved 1000ms

Truncated P5abc subdomain from tetrahymena ribozyme experimental SAS data
Truncated P5abc subdomain from tetrahymena ribozyme Kratky plot
Sample: Truncated P5abc subdomain from tetrahymena ribozyme monomer, 18 kDa RNA
Buffer: 10mM KMOPS 20mM KCl 1mM MgCl2 20uM EDTA, pH: 7
Experiment: SAXS data collected at G1, Cornell High Energy Synchrotron Source (CHESS) on 2016 Dec 3
Revealing the distinct folding phases of an RNA three-helix junction. Nucleic Acids Res 46(14):7354-7365 (2018)
Plumridge A, Katz AM, Calvey GD, Elber R, Kirmizialtin S, Pollack L
RgGuinier 2.2 nm
Dmax 6.8 nm

SASDGD4 – Mixed lineage leukemia protein-1 complex, MLL1-WDR5-ASH2L-RBBP5(2-381)

Retinoblastoma-binding protein 5Histone-lysine N-methyltransferase 2AWD repeat-containing protein 5Set1/Ash2 histone methyltransferase complex subunit ASH2 experimental SAS data
Retinoblastoma-binding protein 5 Histone-lysine N-methyltransferase 2A WD repeat-containing protein 5 Set1/Ash2 histone methyltransferase complex subunit ASH2 Kratky plot
Sample: Retinoblastoma-binding protein 5 monomer, 42 kDa Homo sapiens protein
Histone-lysine N-methyltransferase 2A monomer, 25 kDa Homo sapiens protein
WD repeat-containing protein 5 monomer, 34 kDa Homo sapiens protein
Set1/Ash2 histone methyltransferase complex subunit ASH2 monomer, 60 kDa Homo sapiens protein
Buffer: 300 mM NaCl, 25mM Tris-HCl, 4% glycerol, 1 mM TCEP, pH: 8
Experiment: SAXS data collected at BL19U2, Shanghai Synchrotron Radiation Facility (SSRF) on 2019 Jun 22
The internal interaction in RBBP5 regulates assembly and activity of MLL1 methyltransferase complex. Nucleic Acids Res (2019)
Han J, Li T, Li Y, Li M, Wang X, Peng C, Su C, Li N, Li Y, Xu Y, Chen Y
RgGuinier 5.7 nm
Dmax 18.6 nm
VolumePorod 360 nm3

SASDCE4 – ...resolved 3000ms

Truncated P5abc subdomain from tetrahymena ribozyme experimental SAS data
Truncated P5abc subdomain from tetrahymena ribozyme Kratky plot
Sample: Truncated P5abc subdomain from tetrahymena ribozyme monomer, 18 kDa RNA
Buffer: 10mM KMOPS 20mM KCl 1mM MgCl2 20uM EDTA, pH: 7
Experiment: SAXS data collected at G1, Cornell High Energy Synchrotron Source (CHESS) on 2016 Dec 3
Revealing the distinct folding phases of an RNA three-helix junction. Nucleic Acids Res 46(14):7354-7365 (2018)
Plumridge A, Katz AM, Calvey GD, Elber R, Kirmizialtin S, Pollack L
RgGuinier 2.2 nm
Dmax 6.7 nm

SASDGE4 – Mixed lineage leukemia protein-1 complex, MLL1-WDR5-ASH2L-RBBP5(2-480)

Histone-lysine N-methyltransferase 2AWD repeat-containing protein 5Set1/Ash2 histone methyltransferase complex subunit ASH2Retinoblastoma-binding protein 5 experimental SAS data
Histone-lysine N-methyltransferase 2A WD repeat-containing protein 5 Set1/Ash2 histone methyltransferase complex subunit ASH2 Retinoblastoma-binding protein 5 Kratky plot
Sample: Histone-lysine N-methyltransferase 2A monomer, 25 kDa Homo sapiens protein
WD repeat-containing protein 5 monomer, 34 kDa Homo sapiens protein
Set1/Ash2 histone methyltransferase complex subunit ASH2 monomer, 60 kDa Homo sapiens protein
Retinoblastoma-binding protein 5 monomer, 53 kDa Homo sapiens protein
Buffer: 300 mM NaCl, 25mM Tris-HCl, 4% glycerol, 1 mM TCEP, pH: 8
Experiment: SAXS data collected at BL19U2, Shanghai Synchrotron Radiation Facility (SSRF) on 2019 Jun 22
The internal interaction in RBBP5 regulates assembly and activity of MLL1 methyltransferase complex. Nucleic Acids Res (2019)
Han J, Li T, Li Y, Li M, Wang X, Peng C, Su C, Li N, Li Y, Xu Y, Chen Y
RgGuinier 5.0 nm
Dmax 15.3 nm
VolumePorod 256 nm3

SASDCF4 – Truncated P5abc subdomain from tetrahymena ribozyme: Static 20mM KCl

Truncated P5abc subdomain from tetrahymena ribozyme experimental SAS data
Truncated P5abc subdomain from tetrahymena ribozyme Kratky plot
Sample: Truncated P5abc subdomain from tetrahymena ribozyme monomer, 18 kDa RNA
Buffer: 20mM KCl 10mM KMOPS 20uM EDTA, pH: 7
Experiment: SAXS data collected at G1, Cornell High Energy Synchrotron Source (CHESS) on 2016 Jun 17
Revealing the distinct folding phases of an RNA three-helix junction. Nucleic Acids Res 46(14):7354-7365 (2018)
Plumridge A, Katz AM, Calvey GD, Elber R, Kirmizialtin S, Pollack L
RgGuinier 2.6 nm
Dmax 8.5 nm

SASDGF4 – Mixed lineage leukemia protein-1 complex, MLL1-WDR5-ASH2L-RBBP5(2-480)L399A/L400A/I457A/L459A

Histone-lysine N-methyltransferase 2AWD repeat-containing protein 5Set1/Ash2 histone methyltransferase complex subunit ASH2Retinoblastoma-binding protein 5 experimental SAS data
Histone-lysine N-methyltransferase 2A WD repeat-containing protein 5 Set1/Ash2 histone methyltransferase complex subunit ASH2 Retinoblastoma-binding protein 5 Kratky plot
Sample: Histone-lysine N-methyltransferase 2A monomer, 25 kDa Homo sapiens protein
WD repeat-containing protein 5 monomer, 34 kDa Homo sapiens protein
Set1/Ash2 histone methyltransferase complex subunit ASH2 monomer, 60 kDa Homo sapiens protein
Retinoblastoma-binding protein 5 monomer, 53 kDa Homo sapiens protein
Buffer: 300 mM NaCl, 25mM Tris-HCl, 4% glycerol, 1 mM TCEP, pH: 8
Experiment: SAXS data collected at BL19U2, Shanghai Synchrotron Radiation Facility (SSRF) on 2019 Jun 22
The internal interaction in RBBP5 regulates assembly and activity of MLL1 methyltransferase complex. Nucleic Acids Res (2019)
Han J, Li T, Li Y, Li M, Wang X, Peng C, Su C, Li N, Li Y, Xu Y, Chen Y
RgGuinier 5.3 nm
Dmax 17.2 nm
VolumePorod 313 nm3

SASDCG4 – Truncated P5abc subdomain from tetrahymena ribozyme: Static 100mM KCl

Truncated P5abc subdomain from tetrahymena ribozyme experimental SAS data
Truncated P5abc subdomain from tetrahymena ribozyme Kratky plot
Sample: Truncated P5abc subdomain from tetrahymena ribozyme monomer, 18 kDa RNA
Buffer: 100mM KCl 10mM KMOPS 20uM EDTA, pH: 7
Experiment: SAXS data collected at G1, Cornell High Energy Synchrotron Source (CHESS) on 2016 Jun 17
Revealing the distinct folding phases of an RNA three-helix junction. Nucleic Acids Res 46(14):7354-7365 (2018)
Plumridge A, Katz AM, Calvey GD, Elber R, Kirmizialtin S, Pollack L
RgGuinier 2.5 nm
Dmax 8.0 nm

SASDGG4 – Mixed lineage leukemia protein-1 complex, MLL1-WDR5-ASH2L-RBBP5(2-538)

Histone-lysine N-methyltransferase 2AWD repeat-containing protein 5Set1/Ash2 histone methyltransferase complex subunit ASH2Retinoblastoma-binding protein 5 experimental SAS data
Histone-lysine N-methyltransferase 2A WD repeat-containing protein 5 Set1/Ash2 histone methyltransferase complex subunit ASH2 Retinoblastoma-binding protein 5 Kratky plot
Sample: Histone-lysine N-methyltransferase 2A monomer, 25 kDa Homo sapiens protein
WD repeat-containing protein 5 monomer, 34 kDa Homo sapiens protein
Set1/Ash2 histone methyltransferase complex subunit ASH2 monomer, 60 kDa Homo sapiens protein
Retinoblastoma-binding protein 5 monomer, 59 kDa Homo sapiens protein
Buffer: 300 mM NaCl, 25mM Tris-HCl, 4% glycerol, 1 mM TCEP, pH: 8
Experiment: SAXS data collected at BL19U2, Shanghai Synchrotron Radiation Facility (SSRF) on 2019 Jun 22
The internal interaction in RBBP5 regulates assembly and activity of MLL1 methyltransferase complex. Nucleic Acids Res (2019)
Han J, Li T, Li Y, Li M, Wang X, Peng C, Su C, Li N, Li Y, Xu Y, Chen Y
RgGuinier 5.0 nm
Dmax 15.5 nm
VolumePorod 282 nm3

SASDCH4 – Truncated P5abc subdomain from tetrahymena ribozyme: Static 200mm KCl

Truncated P5abc subdomain from tetrahymena ribozyme experimental SAS data
Truncated P5abc subdomain from tetrahymena ribozyme Kratky plot
Sample: Truncated P5abc subdomain from tetrahymena ribozyme monomer, 18 kDa RNA
Buffer: 200mM KCl 10mM KMOPS 20uM EDTA, pH: 7
Experiment: SAXS data collected at G1, Cornell High Energy Synchrotron Source (CHESS) on 2016 Jun 17
Revealing the distinct folding phases of an RNA three-helix junction. Nucleic Acids Res 46(14):7354-7365 (2018)
Plumridge A, Katz AM, Calvey GD, Elber R, Kirmizialtin S, Pollack L
RgGuinier 2.5 nm
Dmax 8.0 nm

SASDCJ4 – Truncated P5abc subdomain from tetrahymena ribozyme: Static 400mM KCl

Truncated P5abc subdomain from tetrahymena ribozyme experimental SAS data
Truncated P5abc subdomain from tetrahymena ribozyme Kratky plot
Sample: Truncated P5abc subdomain from tetrahymena ribozyme monomer, 18 kDa RNA
Buffer: 400mM KCl 10mM KMOPS 20uM EDTA, pH: 7
Experiment: SAXS data collected at G1, Cornell High Energy Synchrotron Source (CHESS) on 2016 Jun 17
Revealing the distinct folding phases of an RNA three-helix junction. Nucleic Acids Res 46(14):7354-7365 (2018)
Plumridge A, Katz AM, Calvey GD, Elber R, Kirmizialtin S, Pollack L
RgGuinier 2.4 nm
Dmax 8.0 nm

SASDBK4 – The 1:1:3:1 crRNA:Cas6f:Cas7fv:Cas5fv CRISPR/Cas Type I-F short Cascade complex

short-crRNA: CRISPR/Cas Type I-F Cascade componentCas6f: CRISPR/Cas Type I-F Cascade component (CRISPR-associated protein, Csy4 family)Trimeric Cas7fv: CRISPR/Cas Type I-F Cascade component (Uncharacterized protein, Sputcn32_1821)Cas5fv: CRISPR/Cas Type I-F Cascade component (Uncharacterized protein, Sputcn32_1822) experimental SAS data
DAMMIF model
Sample: short-crRNA: CRISPR/Cas Type I-F Cascade component monomer, 14 kDa Shewanella putrefaciens RNA
Cas6f: CRISPR/Cas Type I-F Cascade component (CRISPR-associated protein, Csy4 family) monomer, 21 kDa Shewanella putrefaciens protein
Trimeric Cas7fv: CRISPR/Cas Type I-F Cascade component (Uncharacterized protein, Sputcn32_1821) trimer, 112 kDa Shewanella putrefaciens protein
Cas5fv: CRISPR/Cas Type I-F Cascade component (Uncharacterized protein, Sputcn32_1822) monomer, 38 kDa Shewanella putrefaciens protein
Buffer: 50 mM HEPES 150 mM NaCl 1mM DTT 1mM EDTA, pH: 7
Experiment: SAXS data collected at BM29, ESRF on 2015 Jun 27
Modulating the Cascade architecture of a minimal Type I-F CRISPR-Cas system. Nucleic Acids Res 44(12):5872-82 (2016)
Gleditzsch D, Müller-Esparza H, Pausch P, Sharma K, Dwarakanath S, Urlaub H, Bange G, Randau L
RgGuinier 4.1 nm
Dmax 14.2 nm

SASDCK4 – Truncated P5abc subdomain from tetrahymena ribozyme: Static 0.25mM MgCl2

Truncated P5abc subdomain from tetrahymena ribozyme experimental SAS data
Truncated P5abc subdomain from tetrahymena ribozyme Kratky plot
Sample: Truncated P5abc subdomain from tetrahymena ribozyme monomer, 18 kDa RNA
Buffer: 20mM KCl 0.25mM MgCl2 10mM KMOPS 20uM EDTA, pH: 7
Experiment: SAXS data collected at G1, Cornell High Energy Synchrotron Source (CHESS) on 2016 Jun 17
Revealing the distinct folding phases of an RNA three-helix junction. Nucleic Acids Res 46(14):7354-7365 (2018)
Plumridge A, Katz AM, Calvey GD, Elber R, Kirmizialtin S, Pollack L
RgGuinier 2.4 nm
Dmax 7.6 nm

SASDBL4 – The 1:1:6:1 crRNA:Cas6f:Cas7fv:Cas5fv CRISPR/Cas Type I-F wild-type Cascade complex

Cas6f: CRISPR/Cas Type I-F Cascade component (CRISPR-associated protein, Csy4 family)Cas5fv: CRISPR/Cas Type I-F Cascade component (Uncharacterized protein, Sputcn32_1822)Hexameric Cas7fv: CRISPR/Cas Type I-F Cascade component (Uncharacterized protein, Sputcn32_1821)wildtype-crRNA: CRISPR/Cas Type I-F Cascade component experimental SAS data
DAMMIF model
Sample: Cas6f: CRISPR/Cas Type I-F Cascade component (CRISPR-associated protein, Csy4 family) monomer, 21 kDa Shewanella putrefaciens protein
Cas5fv: CRISPR/Cas Type I-F Cascade component (Uncharacterized protein, Sputcn32_1822) monomer, 38 kDa Shewanella putrefaciens protein
Hexameric Cas7fv: CRISPR/Cas Type I-F Cascade component (Uncharacterized protein, Sputcn32_1821) hexamer, 223 kDa Shewanella putrefaciens protein
wildtype-crRNA: CRISPR/Cas Type I-F Cascade component monomer, 19 kDa RNA
Buffer: 50 mM HEPES 150 mM NaCl 1mM DTT 1mM EDTA, pH: 7
Experiment: SAXS data collected at BM29, ESRF on 2015 Jun 27
Modulating the Cascade architecture of a minimal Type I-F CRISPR-Cas system. Nucleic Acids Res 44(12):5872-82 (2016)
Gleditzsch D, Müller-Esparza H, Pausch P, Sharma K, Dwarakanath S, Urlaub H, Bange G, Randau L
RgGuinier 5.4 nm
Dmax 18.4 nm

SASDCL4 – Truncated P5abc subdomain from tetrahymena ribozyme: Static 0.50mM MgCl2

Truncated P5abc subdomain from tetrahymena ribozyme experimental SAS data
Truncated P5abc subdomain from tetrahymena ribozyme Kratky plot
Sample: Truncated P5abc subdomain from tetrahymena ribozyme monomer, 18 kDa RNA
Buffer: 0.5mM MgCl2 20mM KCl 10mM KMOPS 20uM EDTA, pH: 7
Experiment: SAXS data collected at G1, Cornell High Energy Synchrotron Source (CHESS) on 2016 Jun 17
Revealing the distinct folding phases of an RNA three-helix junction. Nucleic Acids Res 46(14):7354-7365 (2018)
Plumridge A, Katz AM, Calvey GD, Elber R, Kirmizialtin S, Pollack L
RgGuinier 2.3 nm
Dmax 7.2 nm

SASDBM4 – The 1:1:9:1 crRNA:Cas6f:Cas7fv:Cas5fv CRISPR/Cas Type I-F long Cascade complex

Cas6f: CRISPR/Cas Type I-F Cascade component (CRISPR-associated protein, Csy4 family)Cas5fv: CRISPR/Cas Type I-F Cascade component (Uncharacterized protein, Sputcn32_1822)Nonameric Cas7fv: CRISPR/Cas Type I-F Cascade component (Uncharacterized protein, Sputcn32_1821)long-crRNA: CRISPR/Cas Type I-F Cascade component experimental SAS data
DAMMIF model
Sample: Cas6f: CRISPR/Cas Type I-F Cascade component (CRISPR-associated protein, Csy4 family) monomer, 21 kDa Shewanella putrefaciens protein
Cas5fv: CRISPR/Cas Type I-F Cascade component (Uncharacterized protein, Sputcn32_1822) monomer, 38 kDa Shewanella putrefaciens protein
Nonameric Cas7fv: CRISPR/Cas Type I-F Cascade component (Uncharacterized protein, Sputcn32_1821) nonamer, 335 kDa Shewanella putrefaciens protein
long-crRNA: CRISPR/Cas Type I-F Cascade component monomer, 25 kDa RNA
Buffer: 50 mM HEPES 150 mM NaCl 1mM DTT 1mM EDTA, pH: 7
Experiment: SAXS data collected at BM29, ESRF on 2016 Jan 30
Modulating the Cascade architecture of a minimal Type I-F CRISPR-Cas system. Nucleic Acids Res 44(12):5872-82 (2016)
Gleditzsch D, Müller-Esparza H, Pausch P, Sharma K, Dwarakanath S, Urlaub H, Bange G, Randau L
RgGuinier 6.5 nm
Dmax 21.6 nm

SASDCM4 – Truncated P5abc subdomain from tetrahymena ribozyme: Static 1mM MgCl2

Truncated P5abc subdomain from tetrahymena ribozyme experimental SAS data
Truncated P5abc subdomain from tetrahymena ribozyme Kratky plot
Sample: Truncated P5abc subdomain from tetrahymena ribozyme monomer, 18 kDa RNA
Buffer: 1mM MgCl2 20mM KCl 10mM KMOPS 20uM EDTA, pH: 7
Experiment: SAXS data collected at G1, Cornell High Energy Synchrotron Source (CHESS) on 2016 Jun 17
Revealing the distinct folding phases of an RNA three-helix junction. Nucleic Acids Res 46(14):7354-7365 (2018)
Plumridge A, Katz AM, Calvey GD, Elber R, Kirmizialtin S, Pollack L
RgGuinier 2.2 nm
Dmax 7.2 nm

SASDCY4 – RNase E 603-850

RNase E 603-850 experimental SAS data
RNase E 603-850 Rg histogram
Sample: RNase E 603-850 monomer, 30 kDa Escherichia coli protein
Buffer: 50 mM Tris HCl, 100 mM NaCl, 100 mM KCl, 10 mM MgCl2, 10 mM DTT and 5 % glycerol (v/v), pH: 7.5
Experiment: SAXS data collected at SWING, SOLEIL on 2014 Dec 5
Analysis of the natively unstructured RNA/protein-recognition core in the Escherichia coli RNA degradosome and its interactions with regulatory RNA/Hfq complexes. Nucleic Acids Res 46(1):387-402 (2018)
Bruce HA, Du D, Matak-Vinkovic D, Bandyra KJ, Broadhurst RW, Martin E, Sobott F, Shkumatov AV, Luisi BF
RgGuinier 5.3 nm
Dmax 27.5 nm
VolumePorod 139 nm3

SASDCZ4 – RNase E 603-850/ATP-dependent RNA helicase (RhlB) binary complex

RNase E 603-850ATP-dependent RNA helicase RhlB experimental SAS data
GASBOR model
Sample: RNase E 603-850 monomer, 30 kDa Escherichia coli protein
ATP-dependent RNA helicase RhlB monomer, 47 kDa Escherichia coli protein
Buffer: 50 mM Tris HCl, 100 mM NaCl, 100 mM KCl, 10 mM MgCl2, 10 mM DTT and 5 % glycerol (v/v), pH: 7.5
Experiment: SAXS data collected at SWING, SOLEIL on 2016 Feb 11
Analysis of the natively unstructured RNA/protein-recognition core in the Escherichia coli RNA degradosome and its interactions with regulatory RNA/Hfq complexes. Nucleic Acids Res 46(1):387-402 (2018)
Bruce HA, Du D, Matak-Vinkovic D, Bandyra KJ, Broadhurst RW, Martin E, Sobott F, Shkumatov AV, Luisi BF
RgGuinier 5.4 nm
Dmax 29.5 nm
VolumePorod 183 nm3

SASDC25 – RNase E 603-850/ATP-dependent RNA helicase (RhlB)/enolase ternary complex

RNase E 603-850ATP-dependent RNA helicase RhlBEnolase experimental SAS data
GASBOR model
Sample: RNase E 603-850 monomer, 30 kDa Escherichia coli protein
ATP-dependent RNA helicase RhlB monomer, 47 kDa Escherichia coli protein
Enolase dimer, 91 kDa Escherichia coli protein
Buffer: 50 mM Tris HCl, 100 mM NaCl, 100 mM KCl, 10 mM MgCl2, 10 mM DTT and 5 % glycerol (v/v), pH: 7.5
Experiment: SAXS data collected at SWING, SOLEIL on 2014 Jul 16
Analysis of the natively unstructured RNA/protein-recognition core in the Escherichia coli RNA degradosome and its interactions with regulatory RNA/Hfq complexes. Nucleic Acids Res 46(1):387-402 (2018)
Bruce HA, Du D, Matak-Vinkovic D, Bandyra KJ, Broadhurst RW, Martin E, Sobott F, Shkumatov AV, Luisi BF
RgGuinier 6.4 nm
Dmax 30.5 nm
VolumePorod 280 nm3

SASDAG5 – RNA shaperone Hfq

RNA chaperone Hfq experimental SAS data
DAMMIN model
Sample: RNA chaperone Hfq hexamer, 67 kDa Escherichia coli protein
Buffer: 50 mM Tris-HCL 150 mM NaCl 1.0 mM DTT, pH: 7.5
Experiment: SAXS data collected at EMBL X33, DORIS III on 2008 May 2
Structural insights into the dynamics and function of the C-terminus of the E. coli RNA chaperone Hfq. Nucleic Acids Res 39(11):4900-15 (2011)
Beich-Frandsen M, Vecerek B, Konarev PV, Sjöblom B, Kloiber K, Hämmerle H, Rajkowitsch L, Miles AJ, Kontaxis G, Wallace BA, Svergun DI, Konrat R, Bläsi U, Djinovic-Carugo K
RgGuinier 3.2 nm
Dmax 11.2 nm
VolumePorod 110 nm3

SASDAH5 – Complex of Hfq with DsrA

RNA chaperone HfqRNA DsrA experimental SAS data
SASREF model
Sample: RNA chaperone Hfq hexamer, 67 kDa Escherichia coli protein
RNA DsrA monomer, 12 kDa RNA
Buffer: 50 mM Tris-HCL 150 mM NaCl 1.0 mM DTT, pH: 7.5
Experiment: SAXS data collected at EMBL X33, DORIS III on 2010 Nov 16
Structural flexibility of RNA as molecular basis for Hfq chaperone function. Nucleic Acids Res 40(16):8072-84 (2012)
Ribeiro Ede A Jr, Beich-Frandsen M, Konarev PV, Shang W, Vecerek B, Kontaxis G, Hämmerle H, Peterlik H, Svergun DI, Bläsi U, Djinović-Carugo K
RgGuinier 4.3 nm
Dmax 14.5 nm
VolumePorod 210 nm3

SASDGS5 – MvaT (low salt data set)

MvaT(mutant) experimental SAS data
OTHER [STATIC IMAGE] model
Sample: MvaT(mutant) dimer, 28 kDa Pseudomonas aeruginosa (strain … protein
Buffer: 20 mM Bis-Tris 50 mM KCl, pH: 6
Experiment: SAXS data collected at BM29, ESRF on 2018 May 11
Structural basis for osmotic regulation of the DNA binding properties of H-NS proteins. Nucleic Acids Res (2020)
Qin L, Bdira FB, Sterckx YGJ, Volkov AN, Vreede J, Giachin G, van Schaik P, Ubbink M, Dame RT
RgGuinier 3.6 nm
Dmax 14.7 nm
VolumePorod 47 nm3

SASDDT5 – Ribonucleoprotein complex of nonstructural protein sigma NS bound to 20mer RNA (NS-RNP20)

Nonstructural protein sigma NS20mer RNA (unstructured) experimental SAS data
Nonstructural protein sigma NS 20mer RNA (unstructured) Kratky plot
Sample: Nonstructural protein sigma NS octamer, 325 kDa Avian orthoreovirus protein
20mer RNA (unstructured) dimer, 13 kDa RNA
Buffer: 25 mM HEPES, 150 mM NaCl, pH: 7.5
Experiment: SAXS data collected at B21, Diamond Light Source on 2017 Feb 25
Stability of local secondary structure determines selectivity of viral RNA chaperones. Nucleic Acids Res (2018)
...rese AN, Mojzes P, Cockburn JJB, Lamb DC, Tuma R
RgGuinier 7.8 nm
Dmax 38.0 nm
VolumePorod 964 nm3

SASDGT5 – MvaT (high salt data set)

MvaT(mutant) experimental SAS data
OTHER [STATIC IMAGE] model
Sample: MvaT(mutant) dimer, 28 kDa Pseudomonas aeruginosa (strain … protein
Buffer: 20 mM Bis-Tris 300 mM KCl, pH: 6
Experiment: SAXS data collected at BM29, ESRF on 2018 May 11
Structural basis for osmotic regulation of the DNA binding properties of H-NS proteins. Nucleic Acids Res (2020)
Qin L, Bdira FB, Sterckx YGJ, Volkov AN, Vreede J, Giachin G, van Schaik P, Ubbink M, Dame RT
RgGuinier 3.8 nm
Dmax 15.8 nm
VolumePorod 50 nm3

SASDDU5 – Nonstructural protein sigma NS - apoprotein

Nonstructural protein sigma NS experimental SAS data
Nonstructural protein sigma NS Kratky plot
Sample: Nonstructural protein sigma NS hexamer, 244 kDa Avian orthoreovirus protein
Buffer: 25 mM HEPES, 150 mM NaCl, pH: 7.5
Experiment: SAXS data collected at B21, Diamond Light Source on 2017 Feb 25
Stability of local secondary structure determines selectivity of viral RNA chaperones. Nucleic Acids Res (2018)
...rese AN, Mojzes P, Cockburn JJB, Lamb DC, Tuma R
RgGuinier 5.5 nm
Dmax 23.1 nm
VolumePorod 670 nm3

SASDAV5 – apo XMRV RT

apo XMRV RT experimental SAS data
CRYSOL model
Sample: apo XMRV RT monomer, 75 kDa Escherichia coli protein
Buffer: 10 mM HEPES 100 mM KCl 5% Glycerol, pH: 6.5
Experiment: SAXS data collected at EMBL X33, DORIS III on 2011 Dec 8
Structural analysis of monomeric retroviral reverse transcriptase in complex with an RNA/DNA hybrid. Nucleic Acids Res 41(6):3874-87 (2013)
Nowak E, Potrzebowski W, Konarev PV, Rausch JW, Bona MK, Svergun DI, Bujnicki JM, Le Grice SF, Nowotny M
RgGuinier 4.0 nm
Dmax 13.5 nm
VolumePorod 160 nm3

SASDAW5 – XMRV RT + DNA/RNA hybrid

apo XMRV RTRNA_DNA hybrid substrate experimental SAS data
CRYSOL model
Sample: apo XMRV RT monomer, 75 kDa Escherichia coli protein
RNA_DNA hybrid substrate monomer, 15 kDa
Buffer: 10 mM HEPES 100 mM KCl 5% Glycerol, pH: 6.5
Experiment: SAXS data collected at EMBL X33, DORIS III on 2011 Dec 8
Structural analysis of monomeric retroviral reverse transcriptase in complex with an RNA/DNA hybrid. Nucleic Acids Res 41(6):3874-87 (2013)
Nowak E, Potrzebowski W, Konarev PV, Rausch JW, Bona MK, Svergun DI, Bujnicki JM, Le Grice SF, Nowotny M
RgGuinier 3.5 nm
Dmax 11.5 nm
VolumePorod 155 nm3

SASDBD6 – Single stranded poly-deoxythymidine DNA (30mer, dT30)

Poly-deoxythymidine (30mer) experimental SAS data
Single stranded poly-deoxythymidine DNA (30mer, dT30) Rg histogram
Sample: Poly-deoxythymidine (30mer) monomer, 9 kDa DNA
Buffer: 1 mM Na-MOPS, 20 mM NaCl, pH: 7
Experiment: SAXS data collected at G1, Cornell High Energy Synchrotron Source (CHESS) on 2016 Apr 1
...nucleic acids in solution. Nucleic Acids Res 45(9):e66 (2017)
Plumridge A, Meisburger SP, Pollack L
RgGuinier 3.0 nm
Dmax 10.7 nm

SASDBE6 – Single stranded poly-deoxyadenosine DNA (30mer, dA30)

Poly-deoxyadenosine (30mer) experimental SAS data
Single stranded poly-deoxyadenosine DNA (30mer, dA30) Rg histogram
Sample: Poly-deoxyadenosine (30mer) monomer, 9 kDa DNA
Buffer: 1 mM Na-MOPS, 20 mM NaCl, pH: 7
Experiment: SAXS data collected at G1, Cornell High Energy Synchrotron Source (CHESS) on 2015 Apr 1
...nucleic acids in solution. Nucleic Acids Res 45(9):e66 (2017)
Plumridge A, Meisburger SP, Pollack L
RgGuinier 2.7 nm
Dmax 9.5 nm

SASDBG6 – Ribosome biogenesis protein 15 (Nop15)

Ribosome biogenesis protein 15 experimental SAS data
EOM/RANCH model
Sample: Ribosome biogenesis protein 15 monomer, 17 kDa Saccharomyces cerevisiae protein
Buffer: 25 mM HEPES, 500 mM NaCl, 2 mM DTT, pH: 7.5
Experiment: SAXS data collected at 12.3.1 (SIBYLS), Advanced Light Source (ALS) on 2013 Apr 25
Structural analysis reveals the flexible C-terminus of Nop15 undergoes rearrangement to recognize a pre-ribosomal RNA folding intermediate. Nucleic Acids Res 45(5):2829-2837 (2017)
Zhang J, Gonzalez LE, Hall TMT
RgGuinier 2.4 nm
Dmax 10.3 nm
VolumePorod 38 nm3

SASDCT6 – 12N12 nucleosome in 60% sucrose with ADP-BeF3

169 bp DNA (145 bp Widom 601, flanked by 12bp DNA)Histone H2A type 1Histone H2B 1.1Histone H3.2Histone H4 experimental SAS data
12N12 nucleosome in 60% sucrose with ADP-BeF3 Rg histogram
Sample: 169 bp DNA (145 bp Widom 601, flanked by 12bp DNA) monomer, 52 kDa DNA
Histone H2A type 1 monomer, 14 kDa Xenopus laevis protein
Histone H2B 1.1 monomer, 14 kDa Xenopus laevis protein
Histone H3.2 monomer, 15 kDa Xenopus laevis protein
Histone H4 monomer, 11 kDa Xenopus laevis protein
Buffer: 10 mM Tris, 100 mM NaCl, 2 mM MgCl2, 0.1 mM EDTA, 1 mM DTT, 60% (w/v) sucrose, ADP-BeF3 (0.5 mM ADP, 4 mM NaF, 0.6 mM BeCl2), pH: 7.8
Experiment: SAXS data collected at G1, Cornell High Energy Synchrotron Source (CHESS) on 2015 Oct 24
The ATPase motor of the Chd1 chromatin remodeler stimulates DNA unwrapping from the nucleosome. Nucleic Acids Res 46(10):4978-4990 (2018)
Tokuda JM, Ren R, Levendosky RF, Tay RJ, Yan M, Pollack L, Bowman GD
RgGuinier 4.8 nm
Dmax 14.0 nm

SASDCU6 – Chd1-12N12, chromatin remodeler--nucleosome complex, in 60% sucrose without any nucleotides added (Apo)

Chromodomain-helicase-DNA-binding protein 1169 bp DNA (145 bp Widom 601, flanked by 12bp DNA)Histone H2A type 1Histone H2B 1.1Histone H3.2Histone H4 experimental SAS data
Chd1-12N12, chromatin remodeler--nucleosome complex, in 60% sucrose without any nucleotides added (Apo) Rg histogram
Sample: Chromodomain-helicase-DNA-binding protein 1 dimer, 266 kDa Saccharomyces cerevisiae (strain … protein
169 bp DNA (145 bp Widom 601, flanked by 12bp DNA) monomer, 52 kDa DNA
Histone H2A type 1 monomer, 14 kDa Xenopus laevis protein
Histone H2B 1.1 monomer, 14 kDa Xenopus laevis protein
Histone H3.2 monomer, 15 kDa Xenopus laevis protein
Histone H4 monomer, 11 kDa Xenopus laevis protein
Buffer: 10 mM Tris, 100 mM NaCl, 2 mM MgCl2, 0.1 mM EDTA, 1 mM DTT, 60% (w/v) sucrose, pH: 7.8
Experiment: SAXS data collected at G1, Cornell High Energy Synchrotron Source (CHESS) on 2015 Oct 24
The ATPase motor of the Chd1 chromatin remodeler stimulates DNA unwrapping from the nucleosome. Nucleic Acids Res 46(10):4978-4990 (2018)
Tokuda JM, Ren R, Levendosky RF, Tay RJ, Yan M, Pollack L, Bowman GD
RgGuinier 5.2 nm
Dmax 12.8 nm

SASDCV6 – Chd1-12N12, chromatin remodeler--nucleosome complex, in 60% sucrose with ADP-BeF3

Chromodomain-helicase-DNA-binding protein 1169 bp DNA (145 bp Widom 601, flanked by 12bp DNA)Histone H2A type 1Histone H2B 1.1Histone H3.2Histone H4 experimental SAS data
Chd1-12N12, chromatin remodeler--nucleosome complex, in 60% sucrose with ADP-BeF3 Rg histogram
Sample: Chromodomain-helicase-DNA-binding protein 1 dimer, 266 kDa Saccharomyces cerevisiae (strain … protein
169 bp DNA (145 bp Widom 601, flanked by 12bp DNA) monomer, 52 kDa DNA
Histone H2A type 1 monomer, 14 kDa Xenopus laevis protein
Histone H2B 1.1 monomer, 14 kDa Xenopus laevis protein
Histone H3.2 monomer, 15 kDa Xenopus laevis protein
Histone H4 monomer, 11 kDa Xenopus laevis protein
Buffer: 10 mM Tris, 100 mM NaCl, 2 mM MgCl2, 0.1 mM EDTA, 1 mM DTT, 60% (w/v) sucrose, ADP-BeF3 (0.5 mM ADP, 4 mM NaF, 0.6 mM BeCl2), pH: 7.8
Experiment: SAXS data collected at G1, Cornell High Energy Synchrotron Source (CHESS) on 2015 Oct 24
The ATPase motor of the Chd1 chromatin remodeler stimulates DNA unwrapping from the nucleosome. Nucleic Acids Res 46(10):4978-4990 (2018)
Tokuda JM, Ren R, Levendosky RF, Tay RJ, Yan M, Pollack L, Bowman GD
RgGuinier 5.3 nm
Dmax 16.5 nm

SASDCW6 – Chd1-12N12, chromatin remodeler--nucleosome complex, in 60% sucrose with AMP-PNP

Chromodomain-helicase-DNA-binding protein 1169 bp DNA (145 bp Widom 601, flanked by 12bp DNA)Histone H2A type 1Histone H2B 1.1Histone H3.2Histone H4 experimental SAS data
Chd1-12N12, chromatin remodeler--nucleosome complex, in 60% sucrose with AMP-PNP Rg histogram
Sample: Chromodomain-helicase-DNA-binding protein 1 dimer, 266 kDa Saccharomyces cerevisiae (strain … protein
169 bp DNA (145 bp Widom 601, flanked by 12bp DNA) monomer, 52 kDa DNA
Histone H2A type 1 monomer, 14 kDa Xenopus laevis protein
Histone H2B 1.1 monomer, 14 kDa Xenopus laevis protein
Histone H3.2 monomer, 15 kDa Xenopus laevis protein
Histone H4 monomer, 11 kDa Xenopus laevis protein
Buffer: 10 mM Tris, 100 mM NaCl, 2 mM MgCl2, 0.1 mM EDTA, 1 mM DTT, 60% (w/v) sucrose, 0.5 mM AMP-PNP, pH: 7.8
Experiment: SAXS data collected at G1, Cornell High Energy Synchrotron Source (CHESS) on 2015 Oct 24
The ATPase motor of the Chd1 chromatin remodeler stimulates DNA unwrapping from the nucleosome. Nucleic Acids Res 46(10):4978-4990 (2018)
Tokuda JM, Ren R, Levendosky RF, Tay RJ, Yan M, Pollack L, Bowman GD
RgGuinier 5.6 nm
Dmax 16.7 nm

SASDDF7 – Armless mitochondrial tRNA-Arg from Romanomermis culicivorax

Arginyl transfer RNA experimental SAS data
PYMOL model
Sample: Arginyl transfer RNA monomer, 13 kDa Romanomermis culicivorax RNA
Buffer: 50 mM HEPES-NaOH 10 mM MgCl2, pH: 7.4
Experiment: SAXS data collected at SWING, SOLEIL on 2015 Dec 16
Small but large enough: structural properties of armless mitochondrial tRNAs from the nematode Romanomermis culicivorax. Nucleic Acids Res (2018)
Jühling T, Duchardt-Ferner E, Bonin S, Wöhnert J, Pütz J, Florentz C, Betat H, Sauter C, Mörl M
RgGuinier 2.1 nm
Dmax 6.7 nm
VolumePorod 20 nm3

SASDDG7 – Armless mitochondrial tRNA-Ile from Romanomermis culicivorax

Isoleucyl transfer RNA experimental SAS data
PYMOL model
Sample: Isoleucyl transfer RNA monomer, 15 kDa Romanomermis culicivorax RNA
Buffer: 50 mM HEPES-NaOH 10 mM MgCl2, pH: 7.4
Experiment: SAXS data collected at SWING, SOLEIL on 2015 Dec 16
Small but large enough: structural properties of armless mitochondrial tRNAs from the nematode Romanomermis culicivorax. Nucleic Acids Res (2018)
Jühling T, Duchardt-Ferner E, Bonin S, Wöhnert J, Pütz J, Florentz C, Betat H, Sauter C, Mörl M
RgGuinier 2.0 nm
Dmax 6.7 nm
VolumePorod 20 nm3

SASDB78 – Probable ATP-dependent RNA helicase DDX58 (Full-length RIG-I)

Probable ATP-dependent RNA helicase DDX58 experimental SAS data
BUNCH model
Sample: Probable ATP-dependent RNA helicase DDX58 monomer, 108 kDa Homo sapiens protein
Buffer: 25 mM HEPES, 150 mM NaCl, 2.5 mM MgCl2, 10% glycerol and 1mM DTT, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2012 Apr 6
Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Res 46(6):3169-3186 (2018)
Shah N, Beckham SA, Wilce JA, Wilce MCJ
RgGuinier 4.3 nm
Dmax 14.0 nm
VolumePorod 186 nm3

SASDB88 – Probable ATP-dependent RNA helicase DDX58 (Full-length RIG-I) plus ADP-AlFx

Probable ATP-dependent RNA helicase DDX58 experimental SAS data
EOM/RANCH model
Sample: Probable ATP-dependent RNA helicase DDX58 monomer, 108 kDa Homo sapiens protein
Buffer: 25 mM HEPES, 150 mM NaCl, 2.5 mM MgCl2, 10% glycerol and 1mM DTT, 2mM ADP-AlFx, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2015 Nov 20
Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Res 46(6):3169-3186 (2018)
Shah N, Beckham SA, Wilce JA, Wilce MCJ
RgGuinier 4.2 nm
Dmax 15.6 nm
VolumePorod 190 nm3

SASDB98 – Probable ATP-dependent RNA helicase DDX58 (Full-length RIG-I) plus bound 10mer hairpin dsRNA

Probable ATP-dependent RNA helicase DDX585´ppp 10mer hairpin dsRNA experimental SAS data
EOM/RANCH model
Sample: Probable ATP-dependent RNA helicase DDX58 monomer, 108 kDa Homo sapiens protein
5´ppp 10mer hairpin dsRNA monomer, 8 kDa RNA
Buffer: 25 mM HEPES, 150 mM NaCl, 2.5 mM MgCl2, 10% glycerol and 1mM DTT, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2015 May 29
Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Res 46(6):3169-3186 (2018)
Shah N, Beckham SA, Wilce JA, Wilce MCJ
RgGuinier 4.1 nm
Dmax 16.1 nm
VolumePorod 160 nm3

SASDBA8 – Probable ATP-dependent RNA helicase DDX58 (Full-length RIG-I) plus 10mer hairpin dsRNA /AMP-PNP

Probable ATP-dependent RNA helicase DDX585´ppp 10mer hairpin dsRNA experimental SAS data
EOM/RANCH model
Sample: Probable ATP-dependent RNA helicase DDX58 monomer, 108 kDa Homo sapiens protein
5´ppp 10mer hairpin dsRNA monomer, 8 kDa RNA
Buffer: 25 mM HEPES, 150 mM NaCl, 2.5 mM MgCl2, 10% glycerol and 1mM DTT, 0.5 mM AMP-PNP, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2015 May 28
Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Res 46(6):3169-3186 (2018)
Shah N, Beckham SA, Wilce JA, Wilce MCJ
RgGuinier 4.2 nm
Dmax 17.0 nm
VolumePorod 163 nm3

SASDBB8 – Probable ATP-dependent RNA helicase DDX58 (Full-length RIG-I) plus 10mer hairpin dsRNA and ADP-AlFx

Probable ATP-dependent RNA helicase DDX585´ppp 10mer hairpin dsRNA experimental SAS data
EOM/RANCH model
Sample: Probable ATP-dependent RNA helicase DDX58 monomer, 108 kDa Homo sapiens protein
5´ppp 10mer hairpin dsRNA monomer, 8 kDa RNA
Buffer: 25 mM HEPES, 150 mM NaCl, 2.5 mM MgCl2, 10% glycerol and 1mM DTT, 2mM ADP-AlFx, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2015 Nov 20
Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Res 46(6):3169-3186 (2018)
Shah N, Beckham SA, Wilce JA, Wilce MCJ
RgGuinier 4.0 nm
Dmax 18.3 nm
VolumePorod 156 nm3

SASDCC8 – Human TERC 1-20 DNA G-quadruplex

Human telomerase RNA template component, DNA counterpart, nucleotides 1-20 experimental SAS data
DAMMIN model
Sample: Human telomerase RNA template component, DNA counterpart, nucleotides 1-20 dimer, 13 kDa Homo sapiens DNA
Buffer: 20 mM HEPES, 100 mM KCl,, pH: 7.5
Experiment: SAXS data collected at B21, Diamond Light Source on 2017 Aug 2
Structure and hydrodynamics of a DNA G-quadruplex with a cytosine bulge. Nucleic Acids Res 46(10):5319-5331 (2018)
...res A, Krahn NJ, McDougall MD, Orriss GL, McRae EKS, Booy EP, McEleney K, Patel TR, McKenna SA, Stetefeld J
RgGuinier 1.4 nm
Dmax 4.6 nm
VolumePorod 15 nm3

SASDBD8 – Probable ATP-dependent RNA helicase DDX58 (Full-length RIG-I) plus 8mer hairpin dsRNA (SEC-peak1)

Probable ATP-dependent RNA helicase DDX585´ppp 8mer hairpin dsRNA experimental SAS data
EOM/RANCH model
Sample: Probable ATP-dependent RNA helicase DDX58 monomer, 108 kDa Homo sapiens protein
5´ppp 8mer hairpin dsRNA monomer, 6 kDa RNA
Buffer: 25 mM HEPES, 150 mM NaCl, 2.5 mM MgCl2, 10% glycerol and 1mM DTT, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2015 Nov 20
Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Res 46(6):3169-3186 (2018)
Shah N, Beckham SA, Wilce JA, Wilce MCJ
RgGuinier 4.3 nm
Dmax 15.3 nm
VolumePorod 179 nm3

SASDBE8 – Probable ATP-dependent RNA helicase DDX58 (Full-length RIG-I) 8mer hairpin dsRNA/AMP-PNP (SEC-peak1)

Probable ATP-dependent RNA helicase DDX585´ppp 8mer hairpin dsRNA experimental SAS data
EOM/RANCH model
Sample: Probable ATP-dependent RNA helicase DDX58 monomer, 108 kDa Homo sapiens protein
5´ppp 8mer hairpin dsRNA monomer, 6 kDa RNA
Buffer: 25 mM HEPES, 150 mM NaCl, 2.5 mM MgCl2, 10% glycerol and 1mM DTT, 0.5 mM AMP-PNP, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2016 Apr 27
Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Res 46(6):3169-3186 (2018)
Shah N, Beckham SA, Wilce JA, Wilce MCJ
RgGuinier 4.1 nm
Dmax 15.0 nm
VolumePorod 188 nm3

SASDBF8 – Probable ATP-dependent RNA helicase DDX58 (Full-length RIG-I) 8mer hairpin dsRNA/ADP-AlFx (SECpeak1)

Probable ATP-dependent RNA helicase DDX585´ppp 8mer hairpin dsRNA experimental SAS data
EOM/RANCH model
Sample: Probable ATP-dependent RNA helicase DDX58 monomer, 108 kDa Homo sapiens protein
5´ppp 8mer hairpin dsRNA monomer, 6 kDa RNA
Buffer: 25 mM HEPES, 150 mM NaCl, 2.5 mM MgCl2, 10% glycerol and 1mM DTT, 2mM ADP-AlFx, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2015 Nov 20
Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Res 46(6):3169-3186 (2018)
Shah N, Beckham SA, Wilce JA, Wilce MCJ
RgGuinier 4.2 nm
Dmax 16.8 nm
VolumePorod 178 nm3

SASDBG8 – Probable ATP-dependent RNA helicase DDX58 without CARDs (Delta-CARDs RIG-I)

Probable ATP-dependent RNA helicase DDX58 (without CARDs) experimental SAS data
BUNCH model
Sample: Probable ATP-dependent RNA helicase DDX58 (without CARDs) monomer, 80 kDa Homo sapiens protein
Buffer: 25 mM HEPES, 150 mM NaCl, 2.5 mM MgCl2, 10% glycerol and 1mM DTT, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2015 May 29
Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Res 46(6):3169-3186 (2018)
Shah N, Beckham SA, Wilce JA, Wilce MCJ
RgGuinier 3.7 nm
Dmax 13.0 nm
VolumePorod 114 nm3

SASDBH8 – Probable ATP-dependent RNA helicase DDX58 without CARDs (Delta-CARDs RIG-I) plus ADP-AlFx

Probable ATP-dependent RNA helicase DDX58 (without CARDs) experimental SAS data
EOM/RANCH model
Sample: Probable ATP-dependent RNA helicase DDX58 (without CARDs) monomer, 80 kDa Homo sapiens protein
Buffer: 25 mM HEPES, 150 mM NaCl, 2.5 mM MgCl2, 10% glycerol and 1mM DTT, 2mM ADP-AlFx, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2015 Nov 20
Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Res 46(6):3169-3186 (2018)
Shah N, Beckham SA, Wilce JA, Wilce MCJ
RgGuinier 3.5 nm
Dmax 14.0 nm
VolumePorod 132 nm3

SASDBJ8 – Probable ATP-dependent RNA helicase DDX58 without CARDs (Delta-CARDs RIG-I) plus 10mer hairpin dsRNA

Probable ATP-dependent RNA helicase DDX58 (without CARDs)5´ppp 10mer hairpin dsRNA experimental SAS data
CORAL model
Sample: Probable ATP-dependent RNA helicase DDX58 (without CARDs) monomer, 80 kDa Homo sapiens protein
5´ppp 10mer hairpin dsRNA monomer, 8 kDa RNA
Buffer: 25 mM HEPES, 150 mM NaCl, 2.5 mM MgCl2, 10% glycerol and 1mM DTT, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2015 May 29
Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Res 46(6):3169-3186 (2018)
Shah N, Beckham SA, Wilce JA, Wilce MCJ
RgGuinier 2.8 nm
Dmax 9.0 nm
VolumePorod 146 nm3

SASDBK8 – Probable ATP-dependent RNA helicase DDX58 (Delta-CARDs RIG-I) plus 10mer hairpin dsRNA and AMP-PNP

Probable ATP-dependent RNA helicase DDX58 (without CARDs)5´ppp 10mer hairpin dsRNA experimental SAS data
CORAL model
Sample: Probable ATP-dependent RNA helicase DDX58 (without CARDs) monomer, 80 kDa Homo sapiens protein
5´ppp 10mer hairpin dsRNA monomer, 8 kDa RNA
Buffer: 25 mM HEPES, 150 mM NaCl, 2.5 mM MgCl2, 10% glycerol and 1mM DTT, 0.5 mM AMP-PNP, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2015 May 29
Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Res 46(6):3169-3186 (2018)
Shah N, Beckham SA, Wilce JA, Wilce MCJ
RgGuinier 2.8 nm
Dmax 9.0 nm
VolumePorod 135 nm3

SASDBL8 – Probable ATP-dependent RNA helicase DDX58 (Delta-CARDs RIG-I) plus 10mer hairpin dsRNA and ADP-AlFx

Probable ATP-dependent RNA helicase DDX58 (without CARDs)5´ppp 10mer hairpin dsRNA experimental SAS data
CORAL model
Sample: Probable ATP-dependent RNA helicase DDX58 (without CARDs) monomer, 80 kDa Homo sapiens protein
5´ppp 10mer hairpin dsRNA monomer, 8 kDa RNA
Buffer: 25 mM HEPES, 150 mM NaCl, 2.5 mM MgCl2, 10% glycerol and 1mM DTT, 2mM ADP-AlFx, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2015 Nov 20
Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Res 46(6):3169-3186 (2018)
Shah N, Beckham SA, Wilce JA, Wilce MCJ
RgGuinier 2.8 nm
Dmax 8.9 nm
VolumePorod 137 nm3

SASDAM8 – MHV-68 LANA

Latency-associated nuclear antigen experimental SAS data
MHV-68 LANA Rg histogram
Sample: Latency-associated nuclear antigen tetramer, 87 kDa Murid herpesvirus 4 protein
Buffer: 25 mM Na/K Phosphate, pH: 7.5
Experiment: SAXS data collected at EMBL P12, PETRA III on 2013 Apr 27
KSHV but not MHV-68 LANA induces a strong bend upon binding to terminal repeat viral DNA. Nucleic Acids Res 43(20):10039-54 (2015)
...res de Miranda M, Carrondo MA, Simas JP, Kaye KM, Svergun DI, McVey CE
RgGuinier 4.2 nm
Dmax 16.0 nm
VolumePorod 117 nm3

SASDBM8 – Probable ATP-dependent RNA helicase DDX58 (Delta-CARDs RIG-I) plus 8mer hairpin dsRNA (SEC-peak1)

Probable ATP-dependent RNA helicase DDX58 (without CARDs)5´ppp 8mer hairpin dsRNA experimental SAS data
EOM/RANCH model
Sample: Probable ATP-dependent RNA helicase DDX58 (without CARDs) monomer, 80 kDa Homo sapiens protein
5´ppp 8mer hairpin dsRNA monomer, 6 kDa RNA
Buffer: 25 mM HEPES, 150 mM NaCl, 2.5 mM MgCl2, 10% glycerol and 1mM DTT, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2015 May 29
Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Res 46(6):3169-3186 (2018)
Shah N, Beckham SA, Wilce JA, Wilce MCJ
RgGuinier 3.4 nm
Dmax 11.6 nm
VolumePorod 132 nm3

SASDAN8 – mLBS1-2 DNA

MHV-68 TR DNA experimental SAS data
CRYSOL model
Sample: MHV-68 TR DNA monomer, 30 kDa unidentified herpesvirus DNA
Buffer: 10 mM TRIS 150 mM NaCl, pH: 7.6
Experiment: SAXS data collected at EMBL P12, PETRA III on 2013 Apr 27
KSHV but not MHV-68 LANA induces a strong bend upon binding to terminal repeat viral DNA. Nucleic Acids Res 43(20):10039-54 (2015)
...res de Miranda M, Carrondo MA, Simas JP, Kaye KM, Svergun DI, McVey CE
RgGuinier 4.0 nm
Dmax 16.0 nm
VolumePorod 50 nm3

SASDBN8 – Probable ATP-dependent RNA helicase DDX58 (Delta-CARDs) plus 8mer hairpin dsRNA/AMP-PNP (SEC-peak1)

Probable ATP-dependent RNA helicase DDX58 (without CARDs)5´ppp 8mer hairpin dsRNA experimental SAS data
EOM/RANCH model
Sample: Probable ATP-dependent RNA helicase DDX58 (without CARDs) monomer, 80 kDa Homo sapiens protein
5´ppp 8mer hairpin dsRNA monomer, 6 kDa RNA
Buffer: 25 mM HEPES, 150 mM NaCl, 2.5 mM MgCl2, 10% glycerol and 1mM DTT, 0.5 mM AMP-PNP, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2016 Apr 27
Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Res 46(6):3169-3186 (2018)
Shah N, Beckham SA, Wilce JA, Wilce MCJ
RgGuinier 3.2 nm
Dmax 11.1 nm
VolumePorod 114 nm3

SASDAP8 – kLBS1-2 DNA

kLBS1-2 DNA experimental SAS data
CRYSOL model
Sample: kLBS1-2 DNA monomer, 24 kDa unidentified herpesvirus DNA
Buffer: Tris, pH: 7.6
Experiment: SAXS data collected at BM29, ESRF on 2013 Apr 27
KSHV but not MHV-68 LANA induces a strong bend upon binding to terminal repeat viral DNA. Nucleic Acids Res 43(20):10039-54 (2015)
...res de Miranda M, Carrondo MA, Simas JP, Kaye KM, Svergun DI, McVey CE
RgGuinier 4.0 nm
Dmax 16.0 nm
VolumePorod 50 nm3

SASDBP8 – Probable ATP-dependent RNA helicase DDX58 (Delta-CARDs) plus 8mer hairpin dsRNA/ADP-AlFx (SEC-peak1)

Probable ATP-dependent RNA helicase DDX58 (without CARDs)5´ppp 8mer hairpin dsRNA experimental SAS data
CORAL model
Sample: Probable ATP-dependent RNA helicase DDX58 (without CARDs) monomer, 80 kDa Homo sapiens protein
5´ppp 8mer hairpin dsRNA monomer, 6 kDa RNA
Buffer: 25 mM HEPES, 150 mM NaCl, 2.5 mM MgCl2, 10% glycerol and 1mM DTT, 2mM ADP-AlFx, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2015 Nov 20
Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Res 46(6):3169-3186 (2018)
Shah N, Beckham SA, Wilce JA, Wilce MCJ
RgGuinier 3.0 nm
Dmax 10.5 nm
VolumePorod 132 nm3

SASDAQ8 – kLANA mutant dimer-tetramer mixture

ORF73 tetramerORF73 dimer experimental SAS data
NONE model
Sample: ORF73 tetramer tetramer, 63 kDa Human herpesvirus 8 protein
ORF73 dimer dimer, 32 kDa Human herpesvirus 8 protein
Buffer: 25 mM Na/K Phosphate, pH: 7.5
Experiment: SAXS data collected at BM29, ESRF on 2014 Jun 21
KSHV but not MHV-68 LANA induces a strong bend upon binding to terminal repeat viral DNA. Nucleic Acids Res 43(20):10039-54 (2015)
...res de Miranda M, Carrondo MA, Simas JP, Kaye KM, Svergun DI, McVey CE
RgGuinier 2.4 nm
Dmax 9.5 nm
VolumePorod 50 nm3

SASDBQ8 – Probable ATP-dependent RNA helicase DDX58 (Full-length RIG-I) plus 8mer hairpin dsRNA (SEC-peak2)

Probable ATP-dependent RNA helicase DDX585´ppp 8mer hairpin dsRNA experimental SAS data
Probable ATP-dependent RNA helicase DDX58 5´ppp 8mer hairpin dsRNA Kratky plot
Sample: Probable ATP-dependent RNA helicase DDX58 dimer, 215 kDa Homo sapiens protein
5´ppp 8mer hairpin dsRNA dimer, 13 kDa RNA
Buffer: 25 mM HEPES, 150 mM NaCl, 2.5 mM MgCl2, 10% glycerol and 1mM DTT, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2015 Nov 20
Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Res 46(6):3169-3186 (2018)
Shah N, Beckham SA, Wilce JA, Wilce MCJ
RgGuinier 5.7 nm
Dmax 24.6 nm
VolumePorod 389 nm3

SASDAR8 – mLANA 124-316 mLBS1-2 8:1 complex

MHV-68 TR DNALatency-associated nuclear antigen experimental SAS data
CRYSOL model
Sample: MHV-68 TR DNA monomer, 30 kDa unidentified herpesvirus DNA
Latency-associated nuclear antigen octamer, 269 kDa Murid herpesvirus 4 protein
Buffer: 25 mM Na/K Phosphate, pH: 7.5
Experiment: SAXS data collected at EMBL P12, PETRA III on 2013 Apr 27
KSHV but not MHV-68 LANA induces a strong bend upon binding to terminal repeat viral DNA. Nucleic Acids Res 43(20):10039-54 (2015)
...res de Miranda M, Carrondo MA, Simas JP, Kaye KM, Svergun DI, McVey CE
RgGuinier 5.8 nm
Dmax 20.0 nm
VolumePorod 475 nm3

SASDBR8 – Probable ATP-dependent RNA helicase DDX58 (Full-length RIG-I), 8mer hairpin dsRNA/AMP-PNP (SECpeak2)

Probable ATP-dependent RNA helicase DDX585´ppp 8mer hairpin dsRNA experimental SAS data
Probable ATP-dependent RNA helicase DDX58 5´ppp 8mer hairpin dsRNA Kratky plot
Sample: Probable ATP-dependent RNA helicase DDX58 dimer, 215 kDa Homo sapiens protein
5´ppp 8mer hairpin dsRNA dimer, 13 kDa RNA
Buffer: 25 mM HEPES, 150 mM NaCl, 2.5 mM MgCl2, 10% glycerol and 1mM DTT, 0.5 mM AMP-PNP, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2016 Apr 27
Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Res 46(6):3169-3186 (2018)
Shah N, Beckham SA, Wilce JA, Wilce MCJ
RgGuinier 5.8 nm
Dmax 24.6 nm
VolumePorod 450 nm3

SASDAS8 – kLANA 1008-1150 -- kLBS1-2 complex 8:2 (partially dissociated)

kLBS1-2 DNAORF73 tetramerORF73 octamerkLBS1-2 DNA two monomers experimental SAS data
NONE model
Sample: kLBS1-2 DNA monomer, 24 kDa unidentified herpesvirus DNA
ORF73 tetramer tetramer, 63 kDa Human herpesvirus 8 protein
ORF73 octamer octamer, 126 kDa Human herpesvirus 8 protein
kLBS1-2 DNA two monomers dimer, 48 kDa unidentified herpesvirus RNA
Buffer: 25 mM Na/K Phosphate, pH: 7.5
Experiment: SAXS data collected at EMBL P12, PETRA III on 2013 Apr 27
KSHV but not MHV-68 LANA induces a strong bend upon binding to terminal repeat viral DNA. Nucleic Acids Res 43(20):10039-54 (2015)
...res de Miranda M, Carrondo MA, Simas JP, Kaye KM, Svergun DI, McVey CE
RgGuinier 4.8 nm
Dmax 16.0 nm
VolumePorod 250 nm3

SASDBS8 – Probable ATP-dependent RNA helicase DDX58 (Full-length RIG-I) 8mer hairpin dsRNA/ADP-AlFx (SECpeak2)

Probable ATP-dependent RNA helicase DDX585´ppp 8mer hairpin dsRNA experimental SAS data
Probable ATP-dependent RNA helicase DDX58 5´ppp 8mer hairpin dsRNA Kratky plot
Sample: Probable ATP-dependent RNA helicase DDX58 dimer, 215 kDa Homo sapiens protein
5´ppp 8mer hairpin dsRNA dimer, 13 kDa RNA
Buffer: 25 mM HEPES, 150 mM NaCl, 2.5 mM MgCl2, 10% glycerol and 1mM DTT, 2mM ADP-AlFx, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2015 Nov 20
Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Res 46(6):3169-3186 (2018)
Shah N, Beckham SA, Wilce JA, Wilce MCJ
RgGuinier 5.3 nm
Dmax 25.1 nm
VolumePorod 298 nm3

SASDBT8 – Probable ATP-dependent RNA helicase DDX58 (Delta-CARDs RIG-I) plus 8mer hairpin dsRNA (SEC-peak2)

5´ppp 8mer hairpin dsRNAProbable ATP-dependent RNA helicase DDX58 (without CARDs) experimental SAS data
5´ppp 8mer hairpin dsRNA Probable ATP-dependent RNA helicase DDX58 (without CARDs) Kratky plot
Sample: 5´ppp 8mer hairpin dsRNA dimer, 13 kDa RNA
Probable ATP-dependent RNA helicase DDX58 (without CARDs) dimer, 160 kDa Homo sapiens protein
Buffer: 25 mM HEPES, 150 mM NaCl, 2.5 mM MgCl2, 10% glycerol and 1mM DTT, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2015 May 29
Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Res 46(6):3169-3186 (2018)
Shah N, Beckham SA, Wilce JA, Wilce MCJ
RgGuinier 4.1 nm
Dmax 15.0 nm
VolumePorod 273 nm3

SASDBU8 – Probable ATP-dependent RNA helicase DDX58 (Delta-CARDs) plus 8mer hairpin dsRNA/AMP-PNP (SEC-peak2)

5´ppp 8mer hairpin dsRNAProbable ATP-dependent RNA helicase DDX58 (without CARDs) experimental SAS data
5´ppp 8mer hairpin dsRNA Probable ATP-dependent RNA helicase DDX58 (without CARDs) Kratky plot
Sample: 5´ppp 8mer hairpin dsRNA dimer, 13 kDa RNA
Probable ATP-dependent RNA helicase DDX58 (without CARDs) dimer, 160 kDa Homo sapiens protein
Buffer: 25 mM HEPES, 150 mM NaCl, 2.5 mM MgCl2, 10% glycerol and 1mM DTT, 0.5 mM AMP-PNP, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2016 Apr 27
Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Res 46(6):3169-3186 (2018)
Shah N, Beckham SA, Wilce JA, Wilce MCJ
RgGuinier 3.8 nm
Dmax 15.4 nm
VolumePorod 226 nm3

SASDBV8 – Probable ATP-dependent RNA helicase DDX58 (Delta-CARDs) plus 8mer hairpin dsRNA/ADP-AlFx (SEC-peak2)

5´ppp 8mer hairpin dsRNAProbable ATP-dependent RNA helicase DDX58 (without CARDs) experimental SAS data
SASREF model
Sample: 5´ppp 8mer hairpin dsRNA dimer, 13 kDa RNA
Probable ATP-dependent RNA helicase DDX58 (without CARDs) dimer, 160 kDa Homo sapiens protein
Buffer: 25 mM HEPES, 150 mM NaCl, 2.5 mM MgCl2, 10% glycerol and 1mM DTT, 2mM ADP-AlFx, pH: 7.4
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2015 Nov 20
Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Nucleic Acids Res 46(6):3169-3186 (2018)
Shah N, Beckham SA, Wilce JA, Wilce MCJ
RgGuinier 3.9 nm
Dmax 16.0 nm
VolumePorod 230 nm3

SASDF29 – Double-stranded RNA-binding protein Staufen homolog 1 - RNA binding domain 4 - in complex with STAU1 binding site within the ADP-ribosylation factor1

Double-stranded RNA-binding protein Staufen homolog 1 - RNA binding domain 4ADP-ribosylation factor1 - short experimental SAS data
OTHER model
Sample: Double-stranded RNA-binding protein Staufen homolog 1 - RNA binding domain 4 monomer, 8 kDa Homo sapiens protein
ADP-ribosylation factor1 - short monomer, 11 kDa Homo sapiens RNA
Buffer: 50 mM potassium phosphate, 100 mM NaCl, 3.5 mM 2-mercaptoethanol, pH: 6.8
Experiment: SAXS data collected at Rigaku BioSAXS-1000, CEITEC on 2015 Dec 10
...res in ARF1 dsRNA for target recognition. Nucleic Acids Res (2019)
Yadav DK, Zigáčková D, Zlobina M, Klumpler T, Beaumont C, Kubíčková M, Vaňáčová Š, Lukavsky PJ
RgGuinier 1.7 nm
Dmax 6.0 nm
VolumePorod 21 nm3

SASDF39 – Double-stranded RNA-binding protein Staufen homolog 1 - RNA binding domain 3 and 4 - in complex with STAU1 binding site within the ADP-ribosylation factor1

ADP-ribosylation factor1 - shortDouble-stranded RNA-binding protein Staufen homolog 1 - RNA binding domain 3 and 4 experimental SAS data
OTHER model
Sample: ADP-ribosylation factor1 - short monomer, 11 kDa Homo sapiens RNA
Double-stranded RNA-binding protein Staufen homolog 1 - RNA binding domain 3 and 4 monomer, 20 kDa Homo sapiens protein
Buffer: 50 mM sodium phosphate buffer, 300 mM NaCl, 500 mM imidazole, pH: 8
Experiment: SAXS data collected at Rigaku BioSAXS-1000, CEITEC on 2018 May 29
...res in ARF1 dsRNA for target recognition. Nucleic Acids Res (2019)
Yadav DK, Zigáčková D, Zlobina M, Klumpler T, Beaumont C, Kubíčková M, Vaňáčová Š, Lukavsky PJ
RgGuinier 2.1 nm
Dmax 6.4 nm
VolumePorod 39 nm3

SASDF49 – Double-stranded RNA-binding protein Staufen homolog 1 - RNA binding domain 3 and 4 - in complex with STAU1 binding site within the ADP-ribosylation factor1 - long

Double-stranded RNA-binding protein Staufen homolog 1 - RNA binding domain 3 and 4ADP-ribosylation factor1 - long experimental SAS data
Double-stranded RNA-binding protein Staufen homolog 1 - RNA binding domain 3 and 4 ADP-ribosylation factor1 - long Kratky plot
Sample: Double-stranded RNA-binding protein Staufen homolog 1 - RNA binding domain 3 and 4 monomer, 20 kDa Homo sapiens protein
ADP-ribosylation factor1 - long monomer, 16 kDa Homo sapiens RNA
Buffer: 50 mM potassium phosphate, 100 mM NaCl, 3.5 mM 2-mercaptoethanol, pH: 6.8
Experiment: SAXS data collected at B21, Diamond Light Source on 2018 Sep 20
...res in ARF1 dsRNA for target recognition. Nucleic Acids Res (2019)
Yadav DK, Zigáčková D, Zlobina M, Klumpler T, Beaumont C, Kubíčková M, Vaňáčová Š, Lukavsky PJ
RgGuinier 2.5 nm
Dmax 7.0 nm
VolumePorod 53 nm3

SASDB79 – Basic domain of human telomeric repeat-binding factor 2 (TRF2) in complex with telomeric DNA duplex

Basic domain of telomeric repeat-binding factor 2telomere DNA duplex experimental SAS data
MONSA model
Sample: Basic domain of telomeric repeat-binding factor 2 monomer, 5 kDa Homo sapiens protein
telomere DNA duplex monomer, 11 kDa DNA
Buffer: 20 mM Tris-HCl, 50 mM LiCl, pH: 7.5
Experiment: SAXS data collected at Rigaku BioSAXS-1000, CEITEC on 2016 May 3
...restores it. Nucleic Acids Res 45(21):12170-12180 (2017)
Necasová I, Janoušková E, Klumpler T, Hofr C
RgGuinier 1.7 nm
Dmax 6.0 nm
VolumePorod 20 nm3

SASDB89 – Telomeric DNA duplex

telomere DNA duplex experimental SAS data
MONSA model
Sample: telomere DNA duplex monomer, 11 kDa DNA
Buffer: 20 mM Tris-HCl, 50 mM LiCl, pH: 7.5
Experiment: SAXS data collected at Rigaku BioSAXS-1000, CEITEC on 2016 May 3
...restores it. Nucleic Acids Res 45(21):12170-12180 (2017)
Necasová I, Janoušková E, Klumpler T, Hofr C
RgGuinier 1.6 nm
Dmax 5.7 nm
VolumePorod 12 nm3

SASDBA9 – E. coli CcdB2-CcdA2-CcdB2 toxin/antitoxin heterohexamer complex

Toxin CcdBAntitoxin CcdAToxin CcdB experimental SAS data
MODELLER model
Sample: Toxin CcdB dimer, 23 kDa Escherichia coli (strain … protein
Antitoxin CcdA dimer, 17 kDa Escherichia coli (strain … protein
Toxin CcdB dimer, 23 kDa Escherichia coli (strain … protein
Buffer: 10 mM Tris 50 mM NaCl, pH: 7.3
Experiment: SAXS data collected at SWING, SOLEIL on 2013 Jul 24
Molecular mechanism governing ratio-dependent transcription regulation in the ccdAB operon. Nucleic Acids Res 45(6):2937-2950 (2017)
Vandervelde A, Drobnak I, Hadži S, Sterckx YG, Welte T, De Greve H, Charlier D, Efremov R, Loris R, Lah J
RgGuinier 3.4 nm
Dmax 12.0 nm
VolumePorod 92 nm3

SASDED9 – Relaxase domain of TraI

Relaxase (Tra_2) domain of TraI experimental SAS data
GASBOR model
Sample: Relaxase (Tra_2) domain of TraI monomer, 46 kDa Neisseria gonorrhoeae protein
Buffer: 50 mM TRIS-HCl 100 mM NaCl, pH: 8
Experiment: SAXS data collected at BM29, ESRF on 2018 Jul 11
DNA processing by the MOBH family relaxase TraI encoded within the gonococcal genetic island. Nucleic Acids Res 47(15):8136-8153 (2019)
Heilers JH, Reiners J, Heller EM, Golzer A, Smits SHJ, van der Does C
RgGuinier 2.6 nm
Dmax 8.3 nm
VolumePorod 61 nm3

SASDEE9 – TraI_2_C domain of TraI

TraI_2_C domain of TraI experimental SAS data
GASBOR model
Sample: TraI_2_C domain of TraI monomer, 21 kDa Neisseria gonorrhoeae protein
Buffer: 50 mM TRIS-HCl 100 mM NaCl, pH: 8
Experiment: SAXS data collected at BM29, ESRF on 2018 Jul 11
DNA processing by the MOBH family relaxase TraI encoded within the gonococcal genetic island. Nucleic Acids Res 47(15):8136-8153 (2019)
Heilers JH, Reiners J, Heller EM, Golzer A, Smits SHJ, van der Does C
RgGuinier 2.2 nm
Dmax 6.5 nm
VolumePorod 40 nm3

SASDEF9 – TraI of Neisseria gonorrhoeae

TraI experimental SAS data
GASBOR model
Sample: TraI monomer, 91 kDa Neisseria gonorrhoeae protein
Buffer: 50 mM TRIS-HCl 100 mM NaCl, pH: 8
Experiment: SAXS data collected at BM29, ESRF on 2018 Mar 5
DNA processing by the MOBH family relaxase TraI encoded within the gonococcal genetic island. Nucleic Acids Res 47(15):8136-8153 (2019)
Heilers JH, Reiners J, Heller EM, Golzer A, Smits SHJ, van der Does C
RgGuinier 7.3 nm
Dmax 31.4 nm
VolumePorod 293 nm3

SASDBM6 – Nucleolysin TIA-1 isoform p40

Nucleolysin TIA-1 isoform p40 experimental SAS data
Nucleolysin TIA-1 isoform p40 Kratky plot
Sample: Nucleolysin TIA-1 isoform p40 monomer, 21 kDa Homo sapiens protein
Buffer: 20 mM HEPES, 100mM NaCl, 3% v/v glycerol, pH: 7
Experiment: SAXS data collected at SAXS/WAXS, Australian Synchrotron on 2015 Jul 2
TIA-1 RRM23 binding and recognition of target oligonucleotides. Nucleic Acids Res 45(8):4944-4957 (2017)
Waris S, García-Mauriño SM, Sivakumaran A, Beckham SA, Loughlin FE, Gorospe M, Díaz-Moreno I, Wilce MCJ, Wilce JA
RgGuinier 2.3 nm
Dmax 8.8 nm
VolumePorod 26 nm3

SASDBC7 – Human NEI like DNA glycosylase 1 (NEIL1)

Endonuclease 8-like 1 experimental SAS data
GASBOR model
Sample: Endonuclease 8-like 1 monomer, 45 kDa Homo sapiens protein
Buffer: 25mM HEPES 300mM NaCl 1mM DTT 10% Glycerol, pH: 7.5
Experiment: SAXS data collected at BioCAT 18ID, Advanced Photon Source (APS), Argonne National Laboratory on 2015 Mar 13
Destabilization of the PCNA trimer mediated by its interaction with the NEIL1 DNA glycosylase. Nucleic Acids Res 45(5):2897-2909 (2017)
Prakash A, Moharana K, Wallace SS, Doublié S
RgGuinier 3.6 nm
Dmax 15.0 nm
VolumePorod 81 nm3

SASDB68 – Immediate Early 3 DNA (ICP4N IE3_19mer)

Immediate Early 3 experimental SAS data
Immediate Early 3 Kratky plot
Sample: Immediate Early 3 dimer, 12 kDa DNA
Buffer: 20 mM HEPES, 150 mM NaCl, pH: 7.4
Experiment: SAXS data collected at BM29, ESRF on 2015 Nov 12
The herpes viral transcription factor ICP4 forms a novel DNA recognition complex. Nucleic Acids Res 45(13):8064-8078 (2017)
Tunnicliffe RB, Lockhart-Cairns MP, Levy C, Mould AP, Jowitt TA, Sito H, Baldock C, Sandri-Goldin RM, Golovanov AP
RgGuinier 1.9 nm
Dmax 6.9 nm